

AFRICA'S POTENTIAL FOR AGRICULTURE 2015

Published by

TABLE OF CONTENTS

INTRODUCTION

HOWARD G. BUFFETT

Africa is a vast continent with more diversity in agricultural production than likely any other continent in the world. It is also a continent that was shortchanged on soil fertility during the periods of soil formation. In the Midwest of the United States, glaciers deposited valuable minerals and sediment that created some of the most productive soil profiles in the world. This is also true in places like the Ukraine, Argentina and other parts of the world. However, Africa is home to some of the oldest and most weathered landscapes.¹ As a result, less than 10 percent of Africa has what is considered high-quality soils, including the lower third of West Africa; parts of East Africa; and areas within several countries in southern Africa including Zambia, Zimbabwe, South Africa and Mozambique.² The rest of Africa's 54 countries and two disputed territories did not receive the same amount of natural benefit.

Africa has unique ecosystems such as the savannah of the Mara and Serengeti, the volcanoes of Virunga, and the Afromontane and coastal forests from western to eastern Africa. It has vast wildlife corridors traversing multiple countries, oftentimes combining significant national parks. Africa is home to 119 ecoregions, and of those, 89 have less than 10 percent of their area protected.³ These areas need continued protection against misuse, improper exploitation and unsustainable agricultural expansion. The Food and Agriculture Organization (FAO) estimates that 65 percent of agricultural land throughout Africa has been degraded by human activity.⁴ The Montpellier Panel - a prominent group of agriculture, ecology and trade experts from Africa and Europe - estimates that these degraded soils are too damaged to sustain viable food production. Its report No Ordinary Matter: Conserving, Restoring and Enhancing Africa's Soil notes that Africa suffers from the triple threat of land degradation, poor yields and a growing population.⁵ Therefore, to find realistic solutions to African production, we must be realistic about the physical, cultural and political impediments, none of which are small.

AFRICA'S GAP

The history of Africa's soils and land use complicates the strategy for increasing productivity in agriculture. It is not as simple as introducing Western production techniques which rely heavily on synthetic fertilizer and hybrid seeds. African biodiversity is closely linked to achieving food security. Nearly threefourths of recorded protein consumption in Africa is derived from plant sources.⁶ This means that many crops that Africans depend on for consumption do not fall within the 20 crop species that have had historical economic importance to the rest of the world.⁷ The primary crops which have benefited from significant research funds are not many of the traditional African crops. As a result, African agriculture runs the risk of being pushed towards monoculture production, jeopardizing the historical reliance on crop diversity and negatively affecting food security. This is important to note because our Foundation supports strategies to maintain biodiversity and crop diversity. We think this is critical to Africa's future.

This analysis demonstrates the sizeable investment gap that exists to reach peak food production if Africa uses so-called "first world farming" techniques. However, we are not advocating blanket monoculture production or other developed world farming systems which could harm Africa's fragile soils, its ecosystems or reduce a farmer's choices. This is simply an analysis to demonstrate the sizeable financial requirements to achieve increased food production using methods that are commonly promoted in Western development circles. We propose thinking about Africa's potential for agriculture through a different lens: how we analyze opportunities for farmers and how soils are remediated and protected will be a key in our success or failure to support farm populations, which are as high as 90 percent in some African countries. Africa does not "look" like the United States, whether you're analyzing climates, soils, crops, wildlife, terrain, cultures or history. So Africa should not "look" like the United States when it comes to training, crop research, technical assistance or production methods. African farmers and institutions should instead borrow relevant lessons from the United States, Brazil, Australia and others, but also protect and embrace their unique diversity to develop a system for agriculture that is adapted to their circumstances. If they do not, the continent overall will continue its per capita decline in productivity. One of the critical components of getting the solutions right is starting with reasonable assumptions and a realistic understanding of the practical challenges of the barriers which exist.

EXISTING ANALYSIS

A number of organizations and institutions have analyzed Africa's potential for agriculture using different methodologies and assumptions. The different approaches have yielded vastly different results as measured by the amount of available (not always appropriate) arable land in Africa. The actual amount of available and appropriate arable land and its potential productivity is critical to Africa's food security interests and the question of whether Africa can feed itself in the future. Therefore, we set out to understand why different analyses produced significantly different estimates, and to see if we could take it one step further to move it beyond a desk analysis by incorporating two critical assumptions: the practical barriers farmers face in their daily operations and the political barriers that affect change made at scale.

This analysis is based on available public information and our experience on the ground. We believe on-the-ground experience is critical to achieve the most accurate results. However, it is not possible to physically inspect and incorporate every country's actual and planned programs that could affect this type of analysis. A case in point is a recent visit to Rwanda where we observed an ambitious program by the Rwandan government to implement irrigation systems on 247,000 acres (100,000 hectares) with a plan that incorporates smallholder farmers. If implemented successfully, this program will improve yield levels and the reliability of production on a large scale. The effects of the Ebola outbreak in Liberia, Sierra Leone and Guinea will have a serious but as yet unknown effect on food security and farming. As of October 2014, an estimated 40 percent of farms have been abandoned in the hardest hit areas of Sierra Leone.8 Therefore, we are not claiming 100 percent accuracy in this analysis; however, we believe that other analyses have failed to take into account the political, social and cultural barriers that impact agricultural production and they often treat all apparently arable land as the same - two significant mistakes.

OUR EXPERIENCE

As a farmer, I am regularly amazed at how frequently non-farmers are charged with producing analyses and recommending solutions that will have tremendous influence on the issues farmers face. It is the equivalent of asking a non-medical person to perform surgery. Just as trained doctors are best equipped to perform medical procedures, farmers are best equipped to understand the issues farmers face, and they are best equipped to participate in developing practical solutions that work in the real world, not in hypothetical situations. When hypothetical solutions drive policy, it is a recipe for failure.

Our Foundation operates farms in South Africa, Arizona, Nebraska and Illinois for a total of over 16,000 acres (6,475 hectares). I have personally farmed for over 30 years, and have faced crop failures from drought, floods and frost, and watched record crop yields destroyed by hail storms. But my experiences pale in comparison to most African farmers.

One reason this is true, and another mistake that is frequently repeated, is the assumption that all farmers are similar. In fact, there are significant differences among farmers across a range of issues. Failing to recognize the differences between a farmer who has regular market access and a farmer who has a family that regularly experiences hunger periods is like thinking a Volkswagen and a Ferrari are the same because they both use gasolinepowered engines. If we do not account for these differences, and if we do not accurately assess the barriers which keep farm productivity low and communities food insecure, then we are simply presenting nice ideas that will keep people hungry.

I once showed someone a DVD compilation of some of my photographs. The person said, "You need to separate the conflict images from the hunger images." Conflict and hunger are inextricably linked; to suggest otherwise shows a fundamental lack of understanding of both issues. Food is power; hunger is a tool for those who perpetuate conflict; and conflict creates hunger. Hunger itself can create conflict. That is the reality in many countries where we work. There is nothing pleasant about hunger or conflict, but we must discuss these issues openly and honestly if we hope to solve production shortfalls on the African continent.

The truth matters if we want to focus on the right solutions. I recently presented aspects of this analysis to an individual who is a leading voice among the donor community supporting Africa. He told me that it was time to be positive, that the "old trend" was to focus on the problems but the "new trend" is to focus on the successes. I don't care about trends. I care about solving problems, and no amount of positive thinking or rhetoric can overcome flooding or droughts or rebuild depleted soils. Positive talk does not build roads, create markets or overcome corruption. We remain positive but realistic. I have seen too many hungry farmers to worry about being polite. There is something seriously wrong when a farmer cannot feed his or her family, when they have lost their own children to hunger. Therefore I make no apologies for calling it the way I see it. If we do not treat African soils and policies with realistic ideas based on realistic solutions, then we will fail the farmers we all want to help.

The analysis that follows was not conceived by or designed to meet the needs of academic institutions, bureaucrats or economists. It is designed to be a reality check on the depth of the challenges faced by millions of smallholder farmers in Africa. It is hopefully a wake-up call to the critically important and sizeable role that African governments and institutions must play to achieve food security. It is designed to illustrate the point that current commitments by governments and donors are not enough, and frankly, are not even close to what is needed. Our goal is to have the debate around Africa's potential for agriculture be grounded in reality, so that everyone is focused on the highest-priority solutions to the significant practical and political barriers that must be overcome to meet Africa's growing food needs.

⁶Biodiversity in Africa. July 1, 2009. UNEP

⁸ IFAD

¹ Study of land use and deforestation in Central Africa Tropical Forest using low regulation SAR satellite imagery. Saatchi, et al.

² USDA Natural Resources Conservation Service, World Soil Resources, Soil Survey Division, 1996.

³ The Encyclopedia of Earth

⁴Turning the tides of soil degradation in Africa: capturing the reality and exploring opportunities. July 10, 2003. FAO

⁵ No Ordinary Matter: Conserving, Restoring and Enhancing Africa's Soil. December, 2014.

⁷ Biodiversity in Africa. July 1, 2009. UNEP

ANALYSIS BACKGROUND

CONTEXT AND CAVEATS

The goal of this analysis is to construct a comprehensive, data-driven and quantitative story about the practical potential for agricultural production in Africa. Drawing from well-regarded data sources, literature and documented programmatic experience, we have integrated, potentially for the first time, three disparate threads of analysis:

- Location-specific geographic information system (GIS)-calculated land availability and crop yields using varying farming practices
- Quantification of real-life practical and political barriers to agricultural progress in Africa
- Detailed cost and return on investment (ROI) analyses of scalable, comprehensive programs to affect sustainable increases in production

To put this effort into context, it is important to discuss what this analysis is and isn't, what it includes and doesn't include, and what limits we should place on its interpretation and application.

THIS IS NOT AN ACADEMIC EXERCISE, IT IS AN ENTIRELY PRACTICAL ONE

Peer-reviewed academic works for publications have a certain standard that must be met.

This analysis is not intended to meet that standard. The audience for this analysis is anyone who believes that "one should not let the perfect be the enemy of the good" or that something can be accurate and actionable without proving statistical significance. As a Foundation committed to affecting change and challenging the status quo, we count ourselves as part of this audience.

THIS ANALYSIS INTRODUCES A CONCEPT CALLED A HEADWIND INDEX

It is a number from zero to 100 percent that represents the gap between theoretical production increases and practically and politically feasible production increases. For example, if a country were to invest in a program to expand cropland and improve yields, should the country expect the resulting increase in production to match the theoretical added acreage x the theoretical improved output of the soil? Of course not. There are real-life barriers to improvement like poor governance, illiteracy, lack of capital, poor infrastructure, insufficient agricultural research, poor access to markets, limited extension programs and co-ops, imperfect water policies, and many more. These must be accounted for. The Headwind Index attempts to quantify this.

If this example country had a *Headwind Index* of 88 percent, and the math said its program could theoretically yield an increase of 1M tonnes of maize, we would apply the *Headwind Index* to project a practically and politically feasible increase of 120,000 tonnes of maize, <u>assuming the program</u> did not address any of the headwinds. Because change doesn't happen in isolation, one would hope that any well-designed program would strive to reduce these headwinds, closing the gap between the theoretical and practically and politically feasible improvements. That is the whole point of highlighting the *Headwind Index* separately from land and yield calculations.

It is not possible to statistically correlate the *Headwind Index* to the gap between theoretical production increases and actual production increases. First, historical data on theoretical increases does not exist, and even if it did, normal yield fluctuations would muddy any statistical analysis. Second, the *Index* is comprised of 36 metrics and 55 sub-metrics across four major categories. Few, if any, of these could be independently correlated to production because there are too many factors that drive change. And third, headwinds change over time, so we cannot assemble a time-series data set. Additionally, there is no guarantee that the index is linear and a *Headwind Index* of 88 really translates into an 88 percent reduction of theoretical increased production. We have gone to great lengths to define a *Headwind Index* of zero to mean no friction and a *Headwind Index* of 100 to mean no improvement. We did this by a) defining best-in-world countries for each sub-metric, min-max normalizing every variable, and creating a composite, imaginary "perfect country with no headwind" and b) identifying countries in Africa which have shown, despite attempted intervention, little to no improvement on each of the four major categories and defining their scores as 100 percent headwind. Between 0 percent and 100 percent we assumed a linear relationship.

Finally, and not surprisingly, there was missing and unreliable data. This is normal for any analysis of Africa, and we clearly indicate where data is absent or dated (it tends to be five to six countries consistently) and alternate metrics were used where data quality was a major concern. As an example, academic experts suggested we weight child mortality higher than poverty rate as a poverty metric because the former is harder for reporting countries to manipulate than the latter.

Ultimately one must decide whether the quantified *Headwind Index* can be valuable, practical and directionally correct without being statistically provable. Some academics we have shared this with said it can, some said it can't, and some didn't know. We believe it can.

THIS ANALYSIS IS <u>NOT IN ANY WAY</u> A COMMENTARY ON THE EFFECTIVENESS OF FOREIGN AID

While it may be tempting to interpret the *Headwind Index* as "wasted aid dollars," this is not the intent. We did not attempt to look at any aid programs, nor did we review the vast literature on the subject. We fully recognize that aid effectiveness is a current, important and polarizing topic. We are not engaging in this debate with this analysis.

What we are suggesting with this analysis is that programs to address agricultural improvement in Africa should focus on country-specific headwinds in addition to land and yield. We not only attempt to quantify the impact, but we attempt to quantify the costs and return on investment (ROI). This naturally leads to interesting discussions about where actors should prioritize agricultural improvement resources. This is an entirely appropriate use of the analysis.

THIS ANALYSIS IS A STATIC SNAPSHOT IN TIME

Because historical data on land, yields and headwind metrics were not consistently available, it was necessary to frame this analysis as a static snapshot. However, any agricultural improvement programs would take time. This presents a few challenges:

• *Data may be stale*: There is no way around this. Most of our data is from 2008-2012, though some is older and we have highlighted areas of particular concern (e.g., where there has been recent regime change).

- Population and food consumption are growing: We have used OECD consumption standards in all of our analyses and used straight-line population growth assumptions by country.
- *Headwinds change over time*: This is absolutely true. A great example is road construction. Over time, more land becomes accessible for farming, access to markets improves, etc. Our solution to this was to focus on five-year program costs in our ROI analysis. In this window, it is safe to assume that, with the exception of conflict and regime change, most headwind metrics should be stable.

THE ANALYSIS OMITS SEVERAL IMPORANT FACTORS

As with all complex analyses, we had to stop somewhere. Here are the major topics not covered, and we would welcome collaborative additions from others interested in tackling these issues:

- *Climate change*: Land quality and crop yield data use the Global Agro-Ecological Zones (GAEZ) model which, like the rest of our analysis, is a snapshot. It includes detailed weather and rainfall data but cannot account for climate change.
- Loss of farmable land from poor farming practices and urbanization: Again, this analysis is a static snapshot. We did model conservation agriculture techniques, and the GAEZ model does include soil preservation as a bundled variable. Urbanization was not included.

- *R&D for seed varietals*: In our ROI analysis, we model purchase costs for high-quality seed along with training and extension, but not all of those seeds exist today. We do not explicitly model the availability or development cost, either public or private, of these improved seeds.
- *Irrigation*: The entire analysis is based on rain-fed/dryland farming.
- *Livestock and fishing*: Because our focus was on farming output, as opposed to measuring food security, we limited the analysis to crops. Obviously, livestock and fishing are important for diet, economics and land use.
- *Impacts of extreme events:* This analysis was completed before the Ebola outbreak in West Africa. Extraordinary circumstances like this can be devastating to a country's progress and potential.

OUR ANALYSIS OF OPTIMAL CROP CHOICE IS DIRECTIONAL AT BEST

We use the GAEZ crop model and GIS mapping to calculate yields by crop under various levels of farming sophistication. The resolution of the GAEZ model is 10 x 10 km square "pixels" for the entire continent. While this is impressive, it is still 10,000 Ha per pixel...a very large collection of farms with varying conditions. We know from land cover GIS data how much of a pixel is being farmed, but we don't know the actual crop grown in each pixel. We only know this at the country level.

To determine the impact of improving yields, we must make an assumption about what crop is currently grown in each pixel. Our model assumes that farmers grow the "optimal" crop, i.e., the highest output of calories and protein (equally weighted) for their particular land (which will not always be the case). We next compare this to current output by crop for each country. The difference in calorie and protein output is considered to be the benefit of "optimal crop choice."

Clearly there are many assumptions embedded here: uniformity of 10,000 Ha pixels, farmer training, local tradition and market demand, availability and cost of seed, nutrient management, etc. While we can confidently model the costs of implementing crop selection programs (based on existing programs) and apply our Headwind Index to reduce the impact, we recognize the challenges in modeling large shifts in crop decisions.

We believe it is critical to engage in the optimal crop choice discussion as part of the broader agricultural improvement and headwind discussion, and it is an integral, unavoidable component of our yield modeling. That said, the specific output benefits, resulting crop mixes and costs should be taken as directional with large error bars.

It is always easier to poke holes in analysis than it is to create new analysis. For every anecdote or case study presented, there is one that demonstrates a contradictory conclusion. We believe that what we have created is compelling and can be a valuable resource to inform practical, results-oriented actors looking to improve agricultural output and reduce headwinds to farming productivity in Africa. At the same time, we are mindful of the limitations and assumptions inherent in the data and in our methodology.

This introductory narrative is intended to frame these known issues and allow readers to evaluate the analysis in a balanced fashion.

METHODOLOGY

Improving Food Production: Theory vs. Reality

Assessing Soil Suitability with the GAEZ Model

We begin by assessing the biophysical suitability of the soil for major crops

Source: FAO, UN, Lake Partners analysis

Optimizing Crop Types

We use caloric and protein content to assess the most nutritious crop for local conditions

¹Folate is reduced by 4% while vitamins A & Care significantly reduced, primarily from the model choosing grains over bananas/plantains, sweet potatoes and yams Source: FAO, USDA, Lake Partners analysis

Land Accessibility

We then restrict biophysically suitable land by its accessibility to roads and markets

Rationale All Biophysically Suited Land (GAEZ model output) 100% of currently heavily <75 km (47 miles) from cropped land is <75 km (47 all-weather miles) from an all-weather road, with ~80% of roads intensely farmed land within 37.5 km (23 miles) 6 hours to market allows a < 6 hours farmer to sell his/her crops from and return to his/her farm in a single day; common markets measure by World Bank and FAO Available & accessible land

Accessibility of roads and markets affects ability to sell crops and access to inputs and advanced farming techniques

Source: GAEZ, FAO, Lake Partners analysis

Practical & Political Metrics

We use 36 metrics to assess the political & practical climate of each country

We assembled 36 metrics (and 55 submetrics) across 4 categories related to a country's ability to increase agricultural production from its own land

1) Governance & Socioeconomics

Rule of law Corruption Poverty rates Civil & economic freedom Social justice for women Cultural heterogeneity Child mortality rates Orphans & child head-of-household Literacy rates Cell phone use

2) Government Support for Agriculture

Government spending on agriculture Extension, research and education Regulation of protected seeds Commodity reserves Import tariffs Trade delays Water resource management

3) Farming Catalysts

Availability of fertilizer (usage as a proxy) Pesticide use Number of tractors in use Access to capital Access to agricultural inputs & markets Entrepreneurial opportunity Water resources Rural organizations (co-ops) Land rights Women farmers Foreign direct investment Orphan crops Farm size Availability of skilled workforce

4) Infrastructure

Public investment in infrastructure Road condition Grain storage Rail condition Rural electrification

Interpreting Barrier Metrics

For some metrics, whether a high score is "good" or "bad" is debatable in the ag community

Metric	High Score Definition & Rationale (used in this analysis)	Low Score Definition & Alternate Rationale		
Regulation of Protected Seed	Adoption of UPOV ¹ Farmers have access to improved seed and the country is joining the international ag community	Non-Adoption of UPOV ¹ Local farmers lose certain seed storage and reuse rights, putting them at risk		
Import Tariffs	Low Tariffs Country is more likely to engage in free flow of trade with neighbors for ag inputs and outputs	High Tariffs Potential foreign dumping of ag outputs can threaten fragile ag market economies		
Availability of Fertilizer (Usage as a Proxy)	High Usage Usage indicates availability and, at a country level, is one indicator of modern farming, which makes incremental improvement more likely	Low Usage Sustainable farming using conservation techniques actually require less fertilizer while improving yields and farmer economics		
Tractor Usage	High Tractor Count Tractor usage is one indicator of modern farming, which makes incremental improvement more likely	Low Tractor Count Mechanization can displace farm workers if local economies are not ready to absorb them		
Women Farmers	Low Percent of Ag Workforce Women often cannot own land or access credit. Also indicates lack of men in ag economy	High Percent of Ag Workforce In countries with gender equality, it can indicate women's access to land and credit		
Foreign Direct Investment	High FDI One indicator of stability and a country's ability to maintain robust local economies	Low FDI FDI can indicate "land grabs" or equivalents and increased export of locally needed production		
Farm Size	Larger Farms Commercial scale farming is one indicator of modern farming, which makes incremental improvement more likely	Smaller Farms Thriving smallholders are critical for ag success in Africa and commercial farming does not always improve food security or long term soil health		

¹UPOV refers to an organization called the "International Union for the Protection of New Varieties of Plants" and the UPOV Convention was adopted in 1961 to protect intellectual property and encourage breeding of new plant varieties. Source: Lake Partners analysis

Practical & Political Score Methodology

¹Oustered indicator:compoæd of two or more variables that measure the metric they may come from difference sources or mix qualitative & quantitative data ²Governance and Sodoeconomics=CAR; Government Support for Agriculture =Benin; Farming Catalysts=Burund; Infrastructure=Congo Source: Lake Partners analysis

Estimating Growth with Practical & Political Scores

¹Country weights are calculated based on the number of high-, medium- and low-weighted sub-indicators in each category Source: Country-level reports, FAOSTAT, ReSAKSS, Lake Partners analysis

Estimating Feasible Production Growth: Example – Ghana

Addressing Uncertainty in Metrics

Definitions for "suitable and accessible" land are meant to be liberal while "practically and politically feasible" are meant to be realistic

- Our GAEZ suitability criteria of 20/100 for any major crop is more inclusive than other major models (>40/100), and includes marginal soils
- We also assumed that farmers choose crops with greatest nutritional value, while consumption patterns don't change
- "Accessible" land is defined broadly, with 75 km from a road including 100% of currently farmed land and <6 hours to market as a common measure by the World Bank & FAO
- We assume no land loss due to urbanization, while prevention of soil degradation is implicit in GAEZ medium- and high-input scenarios
- Practical and political metrics are designed to realistically measure the headwinds to improvement scaled against an idealized, global standard
- However, headwinds are only applied once when in reality some may be multiplicative (e.g., headwind on changing crops x headwind on farming new land x headwind on yield increases)

Data for our metrics are mainly taken from 2008-2012 and may not capture very recent regime change and its effect on agriculture

- We identified countries that have had major regime change in the past two years¹
 - Six countries were identified and are noted on maps: Libya, Tunisia, Egypt, Mali, Guinea-Bissau and Somalia
 - Libya, Tunisia and Egypt are excluded from rankings where noted

Poor data coverage for some countries also reduces confidence in metrics

- Libya, Somalia, South Sudan and Western Sahara all have less than 50% of the data necessary for our practical & political barrier score calculations (Western Sahara is excluded from all final barrier calculations)
- Poor data coverage is noted on maps where applicable
- Due to lack of current production data, Sudan's production has been approximated by apportioning former Sudan's production by the amount of GAEZ-modeled suitable land in each country

¹ Source: political transition monitoring program also used in the George Mason University State Fragility Index used in our Rule of Law submetric Source: Lake Partners analysis

Interventions to Improve Production

Interventions were developed to determine the costs of improving production and reducing barriers

Using retail prices and programs with records of success, we developed country-specific interventions to increase farmland and improve yields while reducing barriers to farming

Source: Lake Partners analysis

.

Decreasing Headwinds by Increasing Yields

Yield improvement interventions can also affect barriers by breeding successful behaviors

	Intervention	Barriers Affected	Rationale
1	Optimal crop choice	Access to extension services & research	Boosts extension services to disseminate new seeds & information
2	Improved farming techniques	 Use of improved seed Availability of fertilizer Number of tractors in use Pesticide use Access to extension services & research 	 Improved use of fertilizer, improved seeds and pesticides will help grow input markets Also, extension services are improved to help train farmers on use of new techniques
3	Grain storage	 Production loss through poor storage Post-harvest losses of maize Access to adequate storage Commodity reserve 	 Use of improved storage techniques will add efficiency to value-chains, leading to better access Farmers can also store grain to wait for optimal prices, acting as an on-farm commodity reserve

Α.

Multiplicative improvement of several interventions can significantly increase their impact on production

Source: Lake Partners analysis

"Bite-Size" of Interventions

Cost calculations are also estimated at the village¹- and district-level

¹A village wasdefined as 100 farms Source: Lake Partners analysis

EXECUTIVE SUMMARY

How much available farmable land is in Africa?	 There are 414 million Ha (~1 billion acres) of biophysically suitable and accessible land in Africa (~14% of 3,030 M Ha of total land) (Confidence: Medium-High) 1,070 M Ha (2.64 billion acres) of land falls in desert, water, forests or cities 345 M Ha (0.85 billion acres) fall in protected areas or are currently being intensely farmed 225 M Ha (0.55 billion acres) contain very poor soils that are not suitable for growing any major crop 515 M Ha (1.27 billion acres) are inaccessible, being too far from all-weather roads and markets to be feasibly farmed Of the remaining 414 M Ha, only 47 M Ha (117 M acres) are practically and politically feasible
What are feasible production growth estimates, considering additional barriers (practical & political)?	 Given existing practical and political barriers, Africa has the potential to increase its production from 442 M tonnes (322 M maize-equivalent tonnes) to 1,047 M tonnes (1,001 M maize-equivalent tonnes) under rainfed conditions (Confidence: Medium) ~50% of the improvement comes from improving farming techniques (improved seed type, mechanization, nutrients, chemicals, soil erosion mitigation and nutrient management), ~20% from optimal crop selection, ~15% from reducing post-harvest loss and ~15% from expanding into unfarmed land Biophysically, Africa could produce ~7,800 M tonnes (~6,800 M maize-equivalent tonnes), but practical and political barriers create a 85-90% headwind to improvement

Based on feasible production estimates, can Africa feed itself?

How do our estimates compare with prior estimates? Without relieving practical and political barriers, Africa could produce enough to feed itself until 2043, when population growth dominates production increases (Confidence: Medium)

- This assumes nutrition per person doesn't increase while protein and calories per tonne produced increases 35%
- This also assumes smooth intra-Africa trade
- A 3x nutritional production increase would take time, so any window of self-sufficiency would be short
- Relieving the practical and political barriers has up to a 10x multiplier effect on improvement, increasing substantially the opportunity for self-sufficiency

 Our estimate of 47 million Ha (117 M acres) of suitable and practically accessible farmland is below other, prior estimates (Confidence: Medium-High)

- We estimate 666 M Ha of total suitable land, of which 252 M Ha is currently farmed, and practical and political headwinds to improvement limit additionally available land to 47 M Ha
- Previous models suggest a range of potential farmland from 100–600 M Ha (0.25–1.47 billion acres)
- However, other models appear to lack the combination of diversity of modeled crop types and the comprehensive effect of political and practical barriers

What can we learn from country case studies (Tanzania, Ethiopia, Ghana, Kenya, DRC)?

Country's agricultural growth strategies have had mixed success due to national- or district-level factors (Confidence: Medium-High)

- Tanzania's district-level strategies have shown that access to credit and inputs are major levers to agricultural growth
- Ethiopia's centrally directed ag economy creates winners and losers by targeting input and infrastructure programs to the highest-impact regions of the country
- Ghana's market-based reforms have had uneven success, with the agriculturally rich getting richer and the poor getting poorer
- Kenya's big project approach was not sufficiently supported by detailed policies and administrative competence, and has therefore fallen flat
- DRC's instability and lack of reliable data makes in-depth investigation difficult

What would it take for case study countries to feed themselves and become net agricultural exporters?

- Bringing additional farmland into production, optimal crop choice, improved farming techniques and grain storage are the primary drivers for increased production (Confidence: Medium-High)
 - These dwarf the selected country-specific headwind interventions (1-3 studied per country), but are expensive
 - In most countries improved farming takes longer to pay off than other primary production interventions
 - Large countries with good soil South Africa (\$59B), Tanzania (\$231B), Botswana (\$1.2B) and Ghana (\$128B) - can all achieve self-sustainability in 2043 at OECD consumption levels
 - Malawi (\$43B) can get close, but would remain "vulnerable"
 - Smaller countries with poorer soil and higher population densities Uganda (\$103B), Rwanda (\$12B) and Burundi (\$20B) – can only produce 40-55% of their 2043 OECD consumption with these interventions

Additional interventions to reduce country-specific headwinds can have significant impacts, but there are no silver bullets (Confidence: Medium)

- In general, a specific program can reduce a country's headwind 0.5-2.0% (market access in Burundi is an outlier at 4.6%) at a wide range of costs
- These have multiplicative effects when layered onto the increased land and yield interventions, adding between 0.1-12.0% of 2043 OECD consumption each (with improved road conditions in S. Africa an outlier at 25.5%)
- For Uganda, Rwanda and Burundi, we did not study enough country-specific headwind interventions to get them to self-sufficiency

Where should donors focus their time and resources?

How realistic are current country CAADP plans to boost agricultural production?

- While interventions yielding the highest production increases tend to have high ROIs, they also tend to be the most expensive and least currently funded (Confidence: Medium)
 - Bringing unfarmed land into production, improved farming and grain storage are priorities, but expensive
 - Optimal crop choice has a high ROI, but is the most theoretical intervention
 - Reducing headwinds for women farmers in Malawi, water resource management in Rwanda and market access in Ghana are examples of lower cost programs that can demonstrate quick payback, albeit with relatively low absolute production increases
 - There is also the opportunity to pick specific parts of detailed, well-funded country plans to foster working relationships with governments

- The limited number of agricultural plans we analyzed are largely underfunded and broad (Confidence: High)
 - Most countries' agricultural (e.g., CAADP) plans Rwanda, Burundi, Malawi, Uganda, Ghana —target an unfeasible number of problems for intervention and lack the necessary funding for implementation, though there are some targeted bright spots
 - Several plans, including those for Burundi and Uganda, have misplaced priorities and have not targeted problems our analysis suggests would have the highest ROI
 - South Africa's ag plan prioritizes incremental improvements on a broad range of issues, similar to other well-developed ag economies
 - Botswana's well-funded ag plan aligns well with issues we identified and will likely be implemented as budgeted

Overview: Theoretical Opportunity & Headwinds

Africa has a theoretical opportunity to increase production over twenty-fold, though real-world headwinds limit growth

¹Defined as moderate and high use of fertilizer, improved varieties of orops, mechanized tools use of pestiddes and herbiddes soil erosion mitigation, nutrient maintenance and fallow year requirements ²Maize-equivalent tonnes describe tonnes of all major crops that are weighted by calorie and protein content relative to maize Source: FAOSTAT, GAEZ, Lake Partners Analysis

Overview: Projected Consumption & Production

In the current political & social climate, Africa's limited production growth potential may not keep pace with consumption

Source: FAOSTAT ("Production"); UN "World Population to 2300"/UNDP ("Consumption");, Lake Partners analysis

Potential Production and Current Barriers to Growth

Each country experiences unique barriers to significant agricultural growth

Source: Lake Partners analysis

Potential Agricultural Self-Sufficiency at the Country Level

Most countries will not be self-sufficient unless barriers to growth are addressed

Feasible production potential (M maize-equivalent tonnes) (log scale) - High input, optimal crop choice, handicapped by practical & political scores -

Source: Lake Partners analysis, FAOSTAT, UN "World Population to 2300"/UNDP

Without mitigating practical and political barriers, only 14 countries have the agricultural potential to be self-sufficient in 2043

¹USDA/FAO Data (1940-2012), Lake Partnersanalysis

²To absorb a 34% production decrease and remain above 100% of consumption, a country must average 151% of consumption (100%/[100%-34%])

³The former Sudan's 2011 production of 7.9 M tonnesis apportioned to South Sudan (5.7 M tonnes) and Sudan (2.2 M tonnes) using GIS estimates of currently farmed oropland and GAEZ yield estimates

⁴Assuming constant consumption profile (0.7 tonnes per person per year)

Source: Lake Partners analysis

Model Results Comparison

Our model results are below previous estimates of farmable land in Africa

	Estimated African Potential Farmable Land	Model Strengths	Model Weaknesses
McKinsey	590 M Ha [1.5 B acres] (SSA only)	 Considers geographic location of countries for potential ag growth 	 Does not account for practical, physical or political barriers to farming Unspecified criteria for land suitability
FAO	451 M Ha [1.1 B acres]	 Includes wide variety of crops: cereals, roots and tubers, sugar crops, pulses and oil-bearing crops 	 Land only assessed on biophysical suitability – does not account for practical, physical or political barriers to farming Does not include marginal soils in estimate
EU Soil Atlas	243 M Ha <i>[600 M acres]</i> (Includes current farmland)	 Simple model inputs (e.g., elevation, rainfall, poor soils) 	 Self-admitted poor correlation with actual farming (over-exclusion of potential land) Does not account for practical, physical or political barriers to farming
World Bank	96 M Ha [237 M acres]	 Includes some practical barriers to cropland expansion (time-to-market & population density) 	 Only assesses suitability of five crops: maize, soybeans, sugarcane, oil palm and wheat Does not include marginal soils in estimate
HGBF/Lake Partners	47 M Ha [117 M acres]	 Assesses suitability for 18 major crops Includes marginally suitable soils in estimate Includes physical, practical & political barriers to farming 	 Country-level data on barriers Practical & political headwinds applied to 414 M Ha of biophysically & accessible land may not be linear

Source: FAO ("World agriculture towards 2030/2050: the 2012 revision"), World Bank ("Farmland Investments & Food Security"), McKinsey ("Lions on the Move: The Progress & Potential of African Economics"), EU Soil Atlas, Lake Partners analysis

Model Input Comparison

	HGBF/Lake				
	Partners	McKinsey	FAO	EU Soil Atlas	World Bank
	Included?	Included?	Included?	Included?	Included?
		Land Suitability Mod	el Inputs		
Elevation	✓	✓ 1	1	<2,000 m	1
Rainfall	✓	✓ ¹	1	>250 mm/year	1
Temperature	1	✓ ¹	1	<28°C	1
Slope	1	✓1	1	1	1
Land cover	1	✓1	1	1	1
Protected areas	1	✓1	1		1
Soil type	✓	✓1	1	1	1
Soil properties, textural class & depth	1	✓1	1		1
Soil organic carbon	1	✓1	1		1
Soil pH	1	✓1	1		1
Soil water holding capacity	✓	✓ ¹	1		1
Soil sodium exchange % & salinity	✓	✓ ¹	1		1
Soil cation exchange capacity	1	✓ ¹			1
Soil exchangeable nutrients		✓ ¹	<pre> /</pre>		1
Soil lime and gypsum	✓ <u> </u>	✓ ¹			1
Erosion, nutrient maintenance, fallow years	1	✓1	1		1

¹McKinsey provideslittle detailon their model, but we assume they use the GAEZ model as an input based on their dtation of the FAO& World Bank model assources Source: FAO ("World agriculture towards 2030/2050: the 2012 revision"), World Bank ("Farmland Investments & Food Security"), McKinsey ("Lions on the Move: The Progress & Potential of African Economics"), EU Soil Atlas, Lake Partners analysis
Model Input Comparison

	HGBF/Lake Partners	McKinsey	FAO	EU Soil Atlas	World Bank	
	Included?	Included?	Included?	Included?	Included?	
	Lar	nd Accessibility and Avai	lability Inputs			
Roads	✓				 ✓ 	
Ports	✓				1	
Railroads	✓	Coastal vs. landlocked			1	
Time to market	< 6 hours				< 6 hours	
Population density	Urban vs. rural				< 25 people/sq. km.	
Degradation/Loss of Land	Indirectly via GAEZ					
	6	Governance & Socioecon	omic Inputs			
Rule of law	1					
Corruption	1					
Civil & economic freedom	1					
Social justice for women	1					
Cultural heterogeneity						
Poverty rate	 ✓ 		Not cor	isidered		
Child mortality						
Literacy rates	✓					
Orphans	✓					
Cell phone use	1					

Source: FAO ("World agriculture towards 2030/2050: the 2012 revision"), World Bank ("Farmland Investments & Food Security"), McKinsey ("Lions on the Move: The Progress & Potential of African Economics"), EU Soil Atlas, Lake Partners analysis

Model Input Comparison

	HGBF/Lake Partners	McKinsey	FAO	EU Soil Atlas	World Bank
	Included?	Included?	Included?	Included?	Included?
	Gove	ernment Support for Agi	riculture Inputs		
Government spending on ag	1				
Extension, research & education	1				
Regulation of protected seeds	1				
Commodity reserves			Not con	sidered	
Trade delays	1				
Import tariffs	1				
Water resource management	1				
		Farming Catalysts	Inputs		
Availability of fertilizer	1				
Pesticide use	1				
Number of tractors in use	1				
Access to capital	1				
Access to ag inputs and markets					
Entrepreneurial opportunity					
Water resources		Abundant vs. scarce			
Rural organizations (co-ops)	1				

Source: FAO ("World agriculture towards 2030/2050: the 2012 revision"), World Bank ("Farmland Investments & Food Security"), McKinsey ("Lions on the Move: The Progress & Potential of African Economics"), EU Soil Atlas, Lake Partners analysis

Model Input Comparison

	HGBF/Lake Partners	McKinsey	FAO	EU Soil Atlas	World Bank		
	Included?	Included?	Included?	Included?	Included?		
	Farming Catalysts Inputs (cont.)						
Land rights	1						
Women farmers	1						
Foreign Direct Investment	1		Notoor	sidered			
Orphan crops	✓	Not considered					
Farm size	1						
Availability of skilled workforce	1						
		Infrastructure In	puts				
Public investment in infrastructure	1						
Road condition	✓						
Rural electrification	1		Notoor	sidered			
Grain storage	1		NOL COF	isidered			
Post-harvest loss	1						
Rail condition	1						
Nutrition & Consumption							
Calorie content of crops	✓						
Protein content of crops	✓		Not cor	nsidered			
Consumption by crop	1						

Source: FAO ("World agriculture towards 2030/2050: the 2012 revision"), World Bank ("Farmland Investments & Food Security"), McKinsey ("Lions on the Move: The Progress & Potential of African Economics"), EU Soil Atlas, Lake Partners analysis

Available and Accessible Farmable Land

AVAILABLE AND ACCESSIBLE FARMABLE LAND

Available & Accessible Farmable land

~14% of African land area is biophysically suitable and accessible for agriculture

Source: GLC2000, GAEZ, UN-WDPA, Lake Partners analysis

Exclusions: Desert, Forests, Cities and Inland Water

Source: GLC2000, Lake Partners analysis

Source: GLC2000 ("Intensely farmed land"), UN-World Database on Protected Areas ("Protected land"), Lake Partners analysis

Suitability of Remaining Land

Most of the suitable land lies in fertile belts across West & Central Africa and along the eastern coast

Access to Road Infrastructure

~70% of farmable land lies within 75 km (47 miles) of an all-weather road

100% of current heavily cultivated cropland² lies within 75 kilometers (47 miles) of an allweather road

- By comparison, 78% of heavily cultivated land lies within half of that distance (37.5 km/23 miles)
- At the 37.5 km vs. 75 km threshold, practically and politically feasible land decreases 20% to 38 M Ha (94 M acres) and incremental potential production decreases 24% to 512 M maize-equivalent tonnes

Only 70% of potentially suitable land (730 million Ha or 1.8 billion acres) lies within 75 km (47 miles) of a road

The lack of all-weather feeder roads makes the 75 km (47 mile) distance difficult in many places

¹ "All-weather road":paved road (poor or better condition), gravel road (fair or better condition), earth road (very good condition), unknown roads (poor or better condition); N. Africa roads "Major roads" (FAO) ² > 50% per pixel

Source: FAO-GAEZ ("# of suitable crops"); International Road Federation-AICD/FAO ("All-weather roads"), Lake Partners analysis

Access to Markets

An additional ~20% of biophysically suitable land is >6 hours from markets (cities with 50K+ population)

Source: JRC Land Resource Management Unit (EU) ("Distance to market"), Lake Partners analysis

Access to markets (cities > 50K population) is a major indicator of ability to expand beyond subsistence farming

One-way time-to-market of 6 hours is often used as the upper limit by the World Bank and FAO, to preclude a farmer needing to stay overnight at market

Time-to-market includes distance, road & rail quality, major river and open-sea shipping lanes, elevation and slope, type of terrain, and border crossings

Optimal Crops for Consumption

	% of total nutritional balance					
Crop	Current Production	Theoretical Production (High Inputs, Optimal Crop Choice)				
Cassava	32.9%	20.0%				
Maize	14.9%	14.6%				
Yams	12.4%	0.0%				
Rice	5.9%	0.0%				
Sorghum	5.7%	54.9%				
Wheat	5.7%	6.4%				
Sweet Potatoes	4.1%	0.0%				
Oil Palm	4.0%	0.7%				
Banana/Plantain	3.7%	0.0%				
Groundnuts	2.4%	2.5%				
Millet	2.4%	0.0%				
Barley	1.5%	0.1%				
Cowpeas	1.1%	0.1%				
Beans	1.0%	0.5%				
Cottonseed	0.9%	0.0%				
Olives	0.7%	0.2%				
Cocoa	0.7%	0.0%				
Coffee	0.0%	0.0%				

While the model does optimize for caloric and protein yield at 10,000 Ha resolution and shows directional suitability, it obviously cannot incorporate all real-world aspects of farming

Source: FAO-GAEZ, Lake Partners analysis

Land Loss Through Degradation

Land loss comes from both soil maintenance and urbanization

¹ISRIC– World Soil Information

²Henao & Baanante, "Agricultural Production & Soil Nutrient Mining in Africa" (2006) Source: Lake Partners analysis Soil degradation through erosion and overfarming is lowering productivity by reducing farmland and yields

 An estimated 95 M Ha of land have been degraded to the point that no farming can take place without rehabilitation²

In our yield improvement analysis, the GAEZ model accounts for improved conservation farming techniques and nutrient application, which would result in slower degradation

 GAEZ assesses soil erosion, nutrient maintenance and fallow-year requirements (which allow for higher farming intensity in conservation-managed lands) into its yield calculations under medium- and high-input scenarios

While we don't directly measure land loss, it is indirectly accounted for in the GAEZ model

PRACTICAL AND POLITICAL BARRIERS TO FARMING

Practical & Political Barriers to Farming: Overall Score

Even the highest opportunity countries face stiff headwinds to improving productivity in agriculture

¹ Notlisted due to very poor data coverage or recent regime change:W. Sahara, S. Sudan, Egypt, libya & Tunisa Source: Center for Global Policy (George Mason University), Lake Partners analysis

— Lowest Barriers to Farming ¹. —

Country	Score
South Africa	27.6
Morocco	26.0
Botswana	24.7
Algeria	22.7
Namibia	21.3
Ghana	20.7
Senegal	20.2
Malawi	17.1
Gambia	16.5
Lesotho	15.3

— Highest Barriers to Farming ¹ —

Country	Score
Nigeria	6.1
Eritrea	6.1
Guinea-Bissau	5.0
Burundi	3.7
Angola	3.5
Sierra Leone	2.9
Central African Rep.	1.7
Chad	0
Dem. Rep. Congo	0
Somalia	0

Potential Production Comparison

With the exception of the most war-torn countries, Maputo targets appear feasible (though not necessarily by 2015)

	2011 Production (M Tonnes)	Theoretical Maximum (M Tonnes)	Politically & Practically Feasible (M Tonnes)	Est. 2015 Maputo Target ¹ (M Tonnes)	Maputo Target / Feasible Potential	
Nigeria	128.4	572.2	155.7	215.0	138%	
South Africa	13.4	365.3	110.5	25.6	23%	
Ghana	26.6	313.9	86.1	37.8	44%	
Tanzania	21.0	364.5	65.0	22.8	35%	
Mozambique	14.7	564.0	60.4	18.0	30%	
Cote d'Ivoire	13.4	532.1	50.3	23.3	46%	
Mali	7.2	277.6	44.2	8.6	19%	
Ethiopia	16.1	200.3	40.9	17.7	43%	
Kenya	7.4	217.2	37.2	12.0	32%	
Madagascar	9.9	229.9	31.5	12.3	39%	
Zimbabwe	2.5	168.9	26.0	3.9	15%	
Guinea	5.3	279.9	24.5	9.1	37%	
Angola	20.2	122.9	23.7	18.2	77%	Zimhahwe
Burkina Faso	5.0	206.7	23.3	9.4	40%	Botswand
Dem. Rep. Congo	19.8	454.2	19.8	37.7	190%	targets fo
Zambia	5.3	107.4	17.4	5.0	29%	underestim
Niger	5.9	137.2	14.5	9.1	63%	their true
Algeria	4.3	47.8	14.2	8.9	63%	potentia
Sudan	2.2	90.6	11.3	4.4	39%	
Central African Rep.	1.7	424.6	9.1	2.8	30%	
Botswana	0.1	14.1	3.5	0.1	2%	
Chad	2.6	151.6	2.6	5.2	198%	
Somalia	0.5	5.0	0.5	1.1	244%	

¹ Maputo Target Production calculated based on the CAADP target of 6% average annual production increase; calculated from 2003 production data

²The former Sudan's 2011 production of 79M tonnesis apportioned to South Sudan (5.7M tonnes) and Sudan (2.2M tonnes) using GIS estimates of currently farmed orpland and GAEZ yield estimates

Source: FAO Crop Production Data, Lake Partners analysis

Governance & Socioeconomics Metrics

We use 10 metrics (11 submetrics) to assess the state of governance and socioeconomics in each country

1) Governance & Socioeconomics Metrics & Submetrics	Units	Top Score	Source(s)
1a) Rule of law			
1a.1) Current security risk	0-100 (qualitative)	0 (Iceland)	EIU Risk Briefing
1a.2) Current political stability risk	0-100 (qualitative)	0 (Norway)	EIU Risk Briefing
1a.3) Current government effectiveness risk	0-100 (qualitative)	7 (Denmark)	EIU Risk Briefing
1a.4) State fragility index	0-5 (qualitative)	0 (UK)	State Fragility Index (Center for Global Policy, George Mason University); World Bank
1b) Corruption	0-5 (qualitative)	4.95 (Denmark)	World Governance Indicators, World Bank
1c) Civil & economic freedom	0-60 (qualitative)	60 (Norway)	Freedom House
1d) Social justice for women			
1d.1) Women's political rights	0-3 (qualitative)	3 (Norway)	CIRI Human Rights Data Project
1d.2) Women's economic rights	0-3 (qualitative)	3 (Norway)	CIRI Human Rights Data Project
1e) Cultural heterogeneity			
1e.1) Ethnic fractionalization	Indexed avg share of population (0 = 1 ethnic group in country)	0 (Comoros)	National Bureau of Economic Research
1e.2) Linguistic fractionalization	Indexed avg share of population (0 = 1 major language)	0.002 (S. Korea)	National Bureau of Economic Research
1e.3) Religious fractionalization	Indexed avg share of religious affiliation (0=1 religion)	0.002 (Yemen)	National Bureau of Economic Research
1f) Poverty rate	% people living below \$1.25/day (purchasing power parity)	0 (Montenegro)	World Bank (PovCalNet)
1g) Child mortality rate	Under-5 deaths per 1,000 live births	0 (San Marino)	UN Inter-agency Group for Child Mortality Estimation
1h) Literacy rates	% of adults (ages 15+)	100 (Lithuania)	UNESCO/World Bank
1i) Orphans			
1i 1) Orphaned children	Orphans as % of total children	0.03 (Comoros)	UNICEE
1i.2) Children as head-of-household	% orphan households	0 (1 st World Estimate)	Multiple Indicator Cluster Surveys (MICS), UNICEF; Demographic and Health Surveys (DHS), Macro
1j) Cell phone use	Mobile-cellular telephone subscriptions per 100 people	191.1 (Kuwait)	International Telecommunication Union (UN)

Source: Lake Partners analysis

Governance & Socioeconomics: Summary of All Metrics

¹Not listed due to poor data or recent regime change: S. Sudan, Egypt & Tunisia Source: Lake Partners analysis

Rule of Law

¹Lake Partners score is dustered metricbased on: State Fragility Index (George Mason University), Current Security Risk score (EIU), Current Political Stability Risk score (EIU), and Current Government Effectiveness Risk score (EIU) Source: Lake Partners analysis

Corruption

Source: World Bank - World Governance indicators (Control of Corruption), Lake Partners analysis

Freedom & Rights

¹Lake Partnersscore is dustered metricbased on: Women's Political Rights & Women's Economic Rights scores (ORI Human Rights Data Project) Source: Lake Partners analysis

Weights: Medium

Cultural Heterogeneity¹

¹ Lake Partnersscore is dustered metricbased on: Ethnic Linguistic and Religious Fractionalization scores (National Bureau of Economic Research) Source: Lake Partners analysis

Poverty and Child Mortality Rates

Child mortality rates are a major indicator of public health, which has impacts on productivity and income of agriculture workers

Poverty in Africa is tied closely to agricultural performance due to the large majority of people who work as farmers

Between 1997 and 2003, poverty rates in Mozambique fell 15% and economic growth increased to 8% in part due to active targeting of agriculture sector improvements

Source: Lake Partners analysis

Orphans and Literacy Rates

Cell Phone Use

Cell phone use is a good measure of socioeconomic status of a country

 Rwandan cell phone owners have greater than twice the predicted expenditures as the national average

In addition, cell phones are a useful tool for farmers — they may be used for extension services, crop price information, information on caring for livestock or gaining information about crop insurance

Weight: Medium

Source: International Telecommunication Union (UN), Lake Partners analysis

Government Support for Agriculture Metrics

We use 7 metrics (14 submetrics) to assess the state of government support in each country

2 1) Government Support for Agriculture Netrics & Submetrics	Units	Top Score	Source(s)
2a) 2b)	Government spending on agriculture Extension, research and education	Ag spending % of total public budget	30.2 (Zimbabwe)	ReSAKSS 2013 CAADP M&E Indicators
	2b.1) Access to extension services & research	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
	2b.2) Breeding programs (breeders as proxy)	Plant breeders (FTEs) per M Ha of cropland	56 (USA)	FAO-PBBC; Baenzing, 2006
	2b.3) Ag researchers	Number of FTEs per 10,000 Ha of cropland	2.4 (USA)	CGIAR DIIVA project; Pardy, Alston, & Chan-Kang 2013
	2b.4) Improved seed	% of cropland farmed with improved seed	100 (1 st World Est.)	CGIAR DIIVA project; Lake Partners analysis
	2b.5) Public agriculture R&D	Public ag R&D as % of agricultural GDP	4.32 (Botswana)	Agricultural Science and Technology Indicators (ASTI)
201	2b.6) College graduates studying agriculture	Grads per M people	395 (Albania)	UNESCO/World Bank
20)	2c.1) Adoption of UPOV laws (governing plant variety protection [PVP])	0 (No PVP); 1 (in contact with UPOV to implement similar laws); 2 (UPOV accession in progress); 3 (Member of UPOV Convention)	3 (1 st World Est.)	International Union for the Protection of New Varieties of Plants (UPOV), Lake Partners analysis
	2c.2) History of rejecting GMO food aid	0 (Never reject GM food); 1 (Reject unmilled food only); 2 (Reject all GM food aid)	0 (1 st World Est.)	African Centre for Biosafety, "GMOs in Africa" Status Report, Lake Partners analysis
2d) 2e)	Commodity reserves (year-end stock as proxy) Trade delays (time to import/export as proxy)	% grains in year-ending stock vs. annual production	220 (Israel)	USDA-FAS
	2e.1) Time to export	days	5 (Denmark)	WTO, Doing Business Project, Trading across borders survey data
	2e.2) Time to import	days	4 (Singapore)	WTO, Doing Business Project, Trading across borders survey data
2f) 2g)	Import tariffs Water resource management	Avg % import tariffs for most favored nation (MFN)	1.3 (Australia)	Food Security Index by Dupont/Economist: WTO
	2g.1) Access to water for agriculture	0-100 (qualitative)	125 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
	2g.2) Resilience to natural variability in water supply	0-100 (qualitative)	97 (India)	Rural Water Livelihoods Index, Oxford University Centre for Water Research & FAO-Water (UN)
	2g.3) Secure & equitable water entitlement	0-100 (qualitative)	100 (Austria)	Rural Water Livelihoods Index, Oxford University Centre for Water Research & FAO-Water (UN)
	2g.4) Water management regulatory framework	0-3 (qualitative)	4 (1 st World Est.)	African Union/African Ministers' Council on Water (AMCOW), Lake Partners analysis

Government Support for Agriculture: Summary of All Metrics

¹Not listed due to poor data or recent regime change: W. Sahara, S. Sudan, Tunisa & Libya Source: Lake Partners analysis

Government Spending on Agriculture (% of Budget)

Source: ReSAKSS CAADP M&E Indicators, Lake Partners analysis

Extension, Research, and Education

	Access to extension services & research	Breeding programs (breeders as proxy)	Ag researchers	Improved seed	Public agricultural R&D	College graduates in agriculture
	1 – 6 (qualitative)	Plant breeders (FTEs) per M Ha of cropland	Number of FTEs/ 10,000 Ha of cropland	% of cropland farmed with improved seed	Public ag R&D as % of ag GDP	Grads per M people
	1 st World (est.) = 7	US = 56 FTE / M Ha	US = 2.4	1 st World (est.) = 100%	Botswana = 4.3%	Albania = 395 Grads/M
		Top 5 Ov	erall Performers			
Ethiopia	4.3	12.8	0.07	18.8	0.3	90.5
Nigeria	3.3	1.9	0.04	51.5	0.4	ND
Kenya	4.0	2.4	0.21	25.8	1.3	ND
Ghana	4.0	2.9	0.05	30.4	0.9	94.9
Benin	4.5	5.5	0.11	50.0	0.7	12.2
		Bottom 5 C	Overall Performers			
Niger	4.0	0.3	0.01	21.2	0.3	17.9
Mozambique	4.3	0.6	0.07	11.7	0.4	18.1
Burundi	3.3	ND	0.06	7.6	1.8	14.5
Sierra Leone	4.0	2.1	0.10	5.7	0.3	ND
Togo	3.0	3.0	0.08	15.1	0.5	ND
Source:	UN-IFAD/Mo Ibrahim Foundation	FAO-PBBC	CGIAR-DIIVA Project	CGIAR-DIIVA Project	CGIAR-ASTI	UNESCO

Many breeding and R&D programs are highly dependent on unstable funding sources, (e.g. temporary funds from aid organizations) so sustaining a long-term R&D program has proven difficult for many countries

Weight: High

Source: Lake Partners analysis

Agriculture R&D and Impact on Yields

1

While private R&D generally follows public spending, the impact on yields is becoming less clear

Source: Lake Partners analysis

Regulation of Protected Seeds

Source: UPOV, Lake Partners analysis

The International Union for the Protection of New Varieties of Plants (UPOV) is a convention governing the certification of protected hybrid and improved seeds

- Members of UPOV can use seeds that have been certified in other countries without undergoing the process internally
- UPOV membership allows easier adoption of protected improved seeds

For example, Kenya increased the number of maize varieties from 7 to 60 following adoption of UPOV

Most of these were improved varieties (e.g., pest- and drought-resistant)

Weight: Medium

Grains in Year-Ending Stocks

We use year-ending stocks as a proxy for commodity reserves

Many smallholder farmers are unable to sell crops at optimal prices due to poor storage and access to markets following harvest times, when prices dip due to surplus

Commodity reserve programs are able to purchase grains from farmers at higher prices and store them until prices rise later in the year

 Several countries, including Ethiopia and Rwanda, have recently established commodity exchanges to stabilize the flow of commodities to international buyers and prices for farmers

Weight: Medium

Source: USDA-FAS, Lake Partners analysis

Import Tariffs and Trade Delays

Source: WTO Doing Business Survey, Trading Across Borders survey data

Countries like Tanzania help buffer the variability in global pricing of inputs by reducing tariffs

Ethiopia's input tariffs magnify the problem

Export restrictions lead to local oversupply and lower crop prices, which prevent farmers from sustaining profits

Water Resource Management¹

¹LakePartnersscore is a dustered metricbaæd on:Acœsto Water for Agriculture score (IFAD/Molbrahim), Resilience to Natural Variability in Water Supply score (Rural Water Livelihoods Index), Secure & Equitable Water Entitlement score (Rural Water Livelihoods Index), and Water Management Regulatory Framework score (African Union/AMCOW) Source: Lake Partners analysis

Farming Catalysts Metrics

We use 14 metrics (20 submetrics) to assess the catalysts for farming in each country

3) Farming Catalysts Metrics & Submetrics	Units	Top Score	Source(s)
3a) Availability of fertilizer (usage as a rough proxy for availability)			
3a.1) Nitrogen	tonnes/1,000 Ha of cropland	461 (New Zealand)	FAOSTAT-UN
3a.2) Phosphate	tonnes/1,000 Ha of cropland	162 (Jordan)	FAOSTAT-UN
3a.3) Potash	tonnes/1,000 Ha of cropland	136 (Belarus)	FAOSTAT-UN
3b) Pesticide use	tonnes/1,000 Ha of cropland	17.8 (China)	FAOSTAT-UN
3c) Mechanization (tractors in use as a proxy)	Number of tractors per 1,000 Ha of cropland	251 (Switzerland)	FAOSTAT-UN
3d) Access to capital			
3d.1) Growth in agricultural physical assets (in-use)	% (change from 2001-07)	52.7 (Sierra Leone)	FAOSTAT-UN
3d.2) Investment climate for rural businesses	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
3d.3) Crop insurance programs	0 (no program); 1 (pilot); 2 (has program)	2 (1 st World Est.)	Government Support to Agricultural Insurance, World Bank 2010
3e) Access to agricultural input and produce markets	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
3f) Entrepreneurial opportunity			
3f.1) Entrepreneurial Climate	1-142 (qualitative)	1 (Denmark)	Legatum Institute Prosperity Index
3f.2) New business density	New registrations/1,000 people	14.5 (New Zealand)	World Bank
3f.3) Time to start a business	Days	1 (New Zealand)	World Bank, Starting a business survey
3f.4) Startup costs	% of income per capita	0.2 (Denmark)	World Bank, Starting a business survey
3g) Water resources (freshwater withdrawals as proxy)	Freshwater withdrawals as % of renewable water	0 (DRC)	FAO-AQUASTAT/World Bank
3h) Rural organizations (co-ops)			
3h.1) Policy & legal framework for rural organizations (co-ops)	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
3h2) Dialogue between government and rural organizations	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
3i) Land rights			
3i.1) Access to land (rural sector performance assessment)	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation, Lake Partners analysis
3i.2) Insecure tenure and property rights	0-7 (qualitative)	0 (Source defined)	USAID-ARD, Inc. (Land Tenure & Property Rights Regional Reports)
3i.3) Inequitable access to land and natural resources	0-7 (qualitative)	0 (Source defined)	USAID-ARD, Inc. (Land Tenure & Property Rights Regional Reports)
3i.4) Poor land market performance	0-7 (qualitative)	0 (Source defined)	USAID-ARD, Inc. (Land Tenure & Property Rights Regional Reports)
3j) Women farmers	% of agricultural workforce	3.2 (Belize)	FAOSTAT-UN
3k) Foreign Direct Investment (FDI)			
3k.1) Inward FDI per capita	FDI per capita (\$USD)	104 (Liberia)	UN Conference on Trade and Development; Dupont/EIU Food Security Index
3k.2) Preferential target of global investment	Rank (0-177) of Inward FDI Potential	0 (Source defined)	UN Conference on Trade and Development; Dupont/EIU Food Security Index
3I) Orphan crops	% of total harvested land	82 (Namibia)	FAOSTAT-UN; International Centre for Underutilized Crops
3m 1) Farmland per ag worker	Haper person employed in agriculture	147 (Canada)	FAOSTAT-UN
3m 2) Average farm size	Ha per farm	3 232 (Australia)	FAO Agricultural Censuses; CSFVAs; country-level reports; Chand,
			Prasamma, Singh 2011
3n) Availability of skilled workforce (change in ag workforce as proxy)	Avg annual % change in ag workforce	4.2 (Bhutan)	FAUSTAT-UN
Source: Lake Partners analysis			

Farming Catalysts: Summary of All Metrics

¹Not listed due to poor data coverage or recent regime change:W. Sahara, S. Sudan, Egypt, Mali& Tunisia Source: Lake Partners analysis

Fertilizer & Pesticide Availability

We use fertilizer usage as a proxy for fertilizer availability

The use of pesticides could have substantial upside for the productivity of farmers, especially women who are responsible for 90% of hand weeding ¹

¹ Ukekje, 2004, Modernizing Small-holder Agriculture to Ensure Food Security and Gender Empowerment: Issues and Policy, Intergovernmental Group of Twenty Four Source: Lake Partners analysis

Weight (Pesticides): Medium
Mechanization

We use number of tractors in use as a proxy for mechanization

Over the past 40 years, tractor usage in Africa has declined while it has increased ten-fold in developing counties in Asia

As a result 50-80% of cropland is cultivated manually in central and southern Africa¹

Weight: Medium

¹Ashburner & Kienzle, Investment in agricultural mechanization in Africa, FAO Ag and Food Engineering technical report 8, 2011 Source: Lake Partners analysis

Source: FAOSTAT

Access to Capital¹, Inputs & Markets

¹A ccess to Capital is a dustered metric based on submetrics: Growth in Agricultural Physical Assets (FAOSTAT-UN), Investment Climate for Rural Business (IFAD/No Ibrahim Foundation) & Crop Insurance Programs (World Bank) Source: Lake Partners analysis

Entrepreneurial Opportunity

The ability to cheaply and easily start a new business allows for the rapid deployment of new technologies.

For example, to lower the production cost of maize, newly available mobile compact mills are currently being rapidly acquired by entrepreneurs, NGOs and the government in South Africa.²

Ethiopia Cote Guinea S. Sudan CAR d'Ivoire Sierra Liberia Cameroon TogoBenin Leone Ghana Eq. Guinea Uganda Kenya Congo Gabon Entrepreneurial DRC Rwanda **Opportunity** (Lake Burundi Partners score) Tanzania 0 - 20 20 - 40 40 - 60 Angola Mozambigue Zambia Malawi 60 - 80 80 - 100 Zimbabwe Madagascar Recent Regime Change (past 2 Namibia years) Botswana Poor Data Coverage (<50% of datasets) -Swaziland (US = 73.6)S. Africa Lesotho

Entrepreneurial Opportunity¹

Libya

Chad

Egypt

Sudan

Eritrea

Djibouti

Somalia

Tunisia

Niger

Nigeria

Morocco

W. Sahara

The Gambia

Guinea-

Bissau

Senegal

Mauritania

Algeria

Mali

Burkina Faso

Weight: Medium

¹Lake Partnersscore is a dustered metric based on: Legatum Index Entrepreneurial sub-score (Legatum Institute), New Business Density (World Bank), Time to start a new business (World Bank-Ease of Doing Business Survey) and Startup costs (World Bank-Ease of Doing Business Survey) ²S. African Engine ering Newshttp://www.engineeringnews.co.za/artide/bhler-south-africa-laundhes-compact-mobile-maize-milling-plant-2013-04-12 Source: Lake Partners analysis

Water Resources

We use freshwater withdrawals as a proxy for a country's water resources

Withdrawals of Freshwater (for all uses) vs. Renewable Resources (US = 333%)

Source: FAO-AQUASTAT, Lake Partners analysis

Countries with strained water resources are more susceptible to droughts, which can have long-term effects on agricultural production

 South Africa's maize yields fell by 72% following a 1991 drought, and took several years for agricultural GDP to recover

Weight: Medium

Rural Organizations (Co-Ops)

Rural co-ops provide a link between government organizations and farmers

- Co-ops are often used to disseminate funding and inputs from central governments to farmers, functioning as on-the-ground support network
- Co-ops can be used in lieu of inefficient government ministries to gain greater access to remote areas

Co-ops also allow farmers to join and find benefits from scaled input purchases and crop sales

Weight: Medium

Land Rights & Women Farmers

Secure access to land is a necessary component of increasing agricultural investments needed to increase productivity

- Titled land can be used as collateral for loans
- Farmers who own their land are more likely to make long-term investment decisions in that land
- Small farm size limits the impact of interventions such as increased extension services and training programs

Women farmers commonly have less access to land, credit and subsidies

In Malawi, studies have shown that women receive less fertilizer, farm fewer cash crops and receive fewer extension visits than men

Source: USAID, IFAD/Mo Ibrahim Foundation, Lake Partners analysis

¹Lake Partnersscore is a dustered metric based on: Access to Land score (IFAD/Mo Ibrahim Foundation), Insecure Tenure and Property RightsScore (US-AID), Inequitable Access to Land and Natural Resources score (US-AID), and Poor Land Market Performance score (US-AID) Source: Lake Partners analysis

Weights: Medium

Foreign Direct Investment

Foreign Direct Investment measures only private commercial investment and does not account for "land grab" investments - long-term lease deals where agricultural production is primarily for export

Ownership of agricultural land by foreign interests is barred or restricted in Kenya and other nations

Investments by mining companies in the DRC allow for infrastructure improvements that indirectly benefit agricultural production and the training of a more skilled construction sector lowering the cost of future projects

Weight: Medium

Source: UN Conference on Trade and Development, UN Population Division, Lake Partners analysis

Orphan Crops

In theory, orphan crops (like amaranth, yams and taro) require fewer inputs and can be good options for subsistence farmers and food security due to their accessibility and adaptability to local conditions

However, due to their poor economic value they have been less intensely studied and have fewer improved varieties, limiting their potential yields, nutrition density and marketability

International Centre for Underutilized Crops,

Average Farm Size

Growth in average farm size may be indicative of a country's shift from subsistence farming to commercial-scale farms

In some countries (e.g., Zimbabwe), the desire for more local ownership has been shifting farm sizes lower

However, most data collected here is from agricultural censuses from as far back as 1990, and may not be representative of present-day conditions

Data should therefore be taken as directional, but not definitive

Weight: Medium

Source: FAO agricultural censuses, World Food Program Comprehensive Food Security and Vulnerability Analyses, country-level surveys, Lake Partners analysis

Availability of Skilled Workforce

We use the change in agricultural workforce as a proxy for worker availability

In countries with strong non-agricultural sectors such as mining and oil, high reservation wage rates have reduced the affordability of ag workers

Youth (15–34) unemployment in many countries remains high or has reached "epidemic" levels (e.g. Kenya), ensuring plenty of excess labor is available despite upward pressures on the reservation wage in countries with significant petroleum and mining sectors.

Weight: Medium

Source: FAOSTAT, Lake Partners analysis

Infrastructure Metrics

We use 5 metrics (10 submetrics) to assess the state of infrastructure in each country

4) Infrastructure Metrics & Submetrics	Units	Top Score	Source(s)
4a) Public investment in infrastructure			
4a.1) Public resources for rural development	1-6 (qualitative)	7 (1 st World Est.)	IFAD/Mo Ibrahim Foundation
4a.2) Public infrastructure spending	% of GDP	12.6 (Cape Verde)	African Development Bank - AICD
4b) Road condition			
4b.2) Roads paved	%	100 (USA)	International Road Federation/World Bank
4b.1) Extent & quality of road infrastructure	0-4 (qualitative)	7 (Sweden)	EIU Risk Briefing/Mo Ibrahim Foundation
4c) Rural electrification			
4c.1) Access to electricity	0-4 (qualitative)	7 (Sweden)	EIU/Mo Ibrahim Foundation
4c.2) Time required to get electricity	days	17 (Germany)	World Bank - Doing Business Project
4c.3) Rural population with electricity	%	100 (USA/1 st World Est.)	International Electricity Agency
4d) Grain storage			
4d.1) Production loss through poor storage &	% annual cereal production	n 2 (N American Avg.)	FAOSTAT-UN, FAO Global Food Losses and Food Waste Report 2011
(datsportation	as waste	2 (NL Amontioner Aug.)	African Decthariyest Lasses Information System (ADULIS) EAO
4d.2) Post-narvest losses of malze	% of harvest lost	2 (IN American Avg.)	Global Food Losses and Food Waste Report 2011
4d.3) Access to adequate storage	0-1 (qualitative)	1 (Binary Score)	Dupont-EIU Global Food Security Index
4e) Rail condition	0-4 (qualitative)	7 (Sweden)	EIU/Mo Ibrahim Foundation

Infrastructure: Summary of All Metrics

¹Not listed due to poor data or recent regime change:W.Sahara, S.Sudan, Egypt, libya, & Tunisa Source: Lake Partners analysis

Public Investment in Infrastructure¹

Top 10 Perforr	ners (0-100)1
Egypt	61.4
Algeria	60.5
Tunisia	59.0
Morocco	50.0
Namibia	49.9
Lesotho	48.3
Gambia	44.5
Benin	43.3
South Africa	42.9
Kenya	42.8
Bottom 10 Perfo	rmers (0-100) ¹
Bottom 10 Perfo Togo	rmers (0-100) ¹ 27.3
Bottom 10 Perfo Togo Burkina Faso	rmers (0-100) ¹ 27.3 27.1
Bottom 10 Perfo Togo Burkina Faso Congo	rmers (0-100) ¹ 27.3 27.1 24.4
Bottom 10 Perfo Togo Burkina Faso Congo Liberia	rmers (0-100) ¹ 27.3 27.1 24.4 22.7
Bottom 10 Perfo Togo Burkina Faso Congo Liberia Cote d'Ivoire	rmers (0-100) ¹ 27.3 27.1 24.4 22.7 21.4
Bottom 10 Perfo Togo Burkina Faso Congo Liberia Cote d'Ivoire Nigeria	rmers (0-100) ¹ 27.3 27.1 24.4 22.7 21.4 19.8
Bottom 10 Perfo Togo Burkina Faso Congo Liberia Cote d'Ivoire Nigeria Dem. Rep. of Congo	rmers (0-100) ¹ 27.3 27.1 24.4 22.7 21.4 19.8 15.9
Bottom 10 Perfo Togo Burkina Faso Congo Liberia Cote d'Ivoire Nigeria Dem. Rep. of Congo Chad	rmers (0-100) ¹ 27.3 27.1 24.4 22.7 21.4 19.8 15.9 14.1
Bottom 10 Perfo Togo Burkina Faso Congo Liberia Cote d'Ivoire Nigeria Dem. Rep. of Congo Chad Gabon	rmers (0-100) ¹ 27.3 27.1 24.4 22.7 21.4 19.8 15.9 14.1 9.1

For many African countries, years of conflict and post-colonial decay have left infrastructure in disrepair

However, private investment from foreign countries has begun to increase rapidly — China recently surpassed the World Bank as the greatest foreign donor to infrastructure projects

However, nearly two-thirds of infrastructure funding still comes from public spending, and a country's investment in infrastructure ensures access to rural areas that are not lucrative for private investors

Weight: High

¹Lake Partnersscore is a dustered metricbased on: PublicResources for Rural Development score (IFAD/IVo lbrahim) and PublicInfrastructure Spending (A frican Development Bank) Source: UN-IFAD/Mo Ibrahim Foundation, African Development Bank/AICD, Lake Partners analysis

Rail Conditions

Rail infrastructure is extremely poor throughout Africa; roads are much more common for transporting crops to market

However, for those near rail lines, prices for rail freight shipping often set the base price for local road transport as well, benefiting farmers with lowered transport costs through competition

Weight: Low

Source: EIU/Mo Ibrahim Foundation, Lake Partners analysis

Rural Electrification

Adequate Grain Storage

Currently, 10-20% of grain production spoils from bacteria and pests

A continent-wide African Post-Harvest Loss Information System (funded by the European Union) is targeting this aggressively

Weight: Medium

Source: EU/African Post-Harvest Loss Information System (APHLIS), Lake Partners analysis

Road Conditions

The African Development Bank estimates that doubling rural accessibility requires a quadrupling of the length of road networks

Because of poor quality and access to many rural areas, costs of transporting produce may increase from \$0.10 to \$2.00 per ton-km, compared to more accessible farms

Weight: High

Source: International Road Foundation, Lake Partners analysis

Country Case Studies

COUNTRY CASE STUDIES: PRACTICAL BARRIERS TO FARMING

Introduction to Select Country Case Studies

While in-country regional-level data are sporadic, they provide reasonable accuracy on variations in practical and political barriers

	Regional-level Data on Practical and Political Barriers				Headwind Percentage		
	Governance & Socioeconomics	Government Support for Agriculture	Farming Catalysts	Infrastructure	Confidence in Regional Scoring ²	Weighted Average of Regions ¹	Country- Level
Tanzania	 No data available Use subjective +/- relative to country average based on Lake Partners research on regions 	 Area under ag subsidy % ag HH with access to extension programs % farmland planted with improved seed % villages with water council 	 Women % head of farm household % of ag households Hours to town >20K % planted area under organic fertilizer % farms that buy, borrow, rent land % Tractors/hand hoes 	 % ag HH w/ electricity % accessing credit Travel time to town Co-ops/1000 workers % using fertilizer # of ag workers 	Medium	87.9%	87.2%
Ethiopia	 No data available Use subjective +/- relative to country average based on Lake Partners research on regions 	 Gov't spend on ag and natural resources % visited by extension agents % farmers using improved seed 	 Women % of ag workforce % accessing credit Hours to town >20K Co-ops/1000 workers % using fertilizer # of ag workers 	 % ag HH w/ electricity connection Avg % crop lost Km all weather roads/ 1000 people Per capita spend on rural development 	Medium (No data on land rights)	88.0%	86.5%
Ghana	 No data available Use subjective +/- relative to country average based on Lake Partners research on regions 	 # of Ministry of ag district offices % rating local water and sanitation services "very well" 	 Women % of ag workforce % farms w/ loans Hours to town >20K % farms without market stalls % of co-ops Input dealers/Ha farmed % workforce in Ag 	 % farms w/ access to electricity Crop loss % % rating road maintenance as "good" 	Med-Low (Limited data on Gov't Support, none on land rights)	82.2%	79.3%
Kenya	 No data available Use subjective +/- relative to country average based on Lake Partners research on regions 	 Distance to crop extension service provider % rating local water and sanitation services "very well" 	 % ag HH receiving ag credit Hours to town >20K % farms without market stalls 	 % ag survey respondents w/ electricity Maize & sorghum loss % % rating road maintenance as "good" 	LOW (Limited/no data on Gov't Support, input use, land rights)	76.8%	85.8%
DRC	• No data available	• No data available	• No data available	• No data available	N/A	N/A	N/A

¹Weighted by potential production using GAEZ high-level inputs

² Combination of coverage, source reliability and comparability to country-level metrics

Source: Regional census data, local surveys and studies, Lake Partners analysis

Case Study: Tanzania

Source: Lake Partners analysis; FAOSTAT; GAEZ

Case Study: Tanzania

Practical and Political Barriers to Production Potential

Government-led market-driven improvements have fueled strong agricultural growth and put Tanzania on a path toward self-sufficiency

Case Study: Tanzania's "Bread Basket"

Despite structural disadvantages, Mbeya's local focus on credit has helped it outperform neighboring Morogoro

Morogoro has better roads, closer markets, more tractors and fewer women farmers than Mbeya...

...however Mbeya's government offers better access to extension programs and water councils while more effectively utilizing opportunities to expand credit ...

...which has allowed Mbeya to significantly outperform Morogoro in farmland growth and yield

Mbeya's government support for agriculture is major lever on agricultural production growth

¹Tanzanian Agricultural Survey Source: Lake Partners Analysis

Case Study: Tanzania Credit and Input Programs

- Credit is more heavily utilized in Mbeya, improving inputs, technology and production growth
 - Mbeya has been successful in using aid from Federal and NGO sources to expand the availability of credit, especially among poor and female farmers
 - Through Mbeya's government-run Rural Financial Services Programme, the number of lending co-ops grew from 11 in 2003¹ to 28 by 2006²
 - Officials in Morogoro have struggled to introduce micro-financing schemes for poor, subsidy-reliant smallholders who
 produce the majority of food
- Pervasive corruption in managing subsidies makes direct credit to farmers relatively more effective as a catalyst to farm production
 - "It is estimated that 60% of input subsidies are captured by village officials³, never reaching farmers
 - Mbeya is more aware of corruption than Morogoro, with Morogoro citizens 3.5x more likely to believe that their officials are "not corrupt" (14% vs. 4%)⁴

	Farmers using 2+ lines of credit ⁵	Farms using improved seed ⁵	Farms using chemical fertilizer ⁵	Farms using irrigation ⁶	Change in production for all crops, 2005-10 (1,000 tons) ⁵
Mbeya	1.1%	25%	35%	10%	1050
Morogoro	0.5%	16%	13%	9%	(313)
Mainland Average	0.7%	24%	13%	7%	N/A

Access to improved inputs has been critical to agricultural improvement but subsidies are less efficient than credit in increasing production

¹ GRDB Bank of Tanzania, Piprek, 2007
 ² Shekilango, 2012, MA ThesisLund Univ. Sweden
 ³ World Bank Report, Pan & Christiaensen
 ⁴ Tanzanian Research Into Use Program, Morogoro Region Report, 2008
 ⁵ Tanzanian Agricultural Survey
 ⁶ Tanzanian Min.of Water Statistics
 Source: Lake Partners analysis

.

Case Study: Ethiopia

Case Study: Ethiopia's Strategy For Agriculture

State-directed agriculture is the "long game" for development

Resources within the agricultural sector are targeted at the regional, district and village level to maximize production and meet other national goals

Case Study: Ethiopia's Improved Inputs

Increased fertilizer use has been targeted where it will be of most use

Fertilizer and other inputs are generally underutilized but efforts to direct greater use in areas of greatest return are underway

Source: Lake Partners analysis

Case Study: Ethiopia Water and Land Use

Semi-arid areas are targeted for irrigation and more arid areas set aside for livestock production

- Ethiopia seeks to limit the impact of droughts through prioritization of water resources
 - In the semi-arid northern regions, irrigation and drought resilient farming techniques/technologies have been the focus of government investment
 - The government has supported shifting agriculture from the most drought-prone areas to similar eco-zones
- Rangeland has been isolated due to limited water resources for other agricultural production
 - Somali region has been primarily set aside for additional grazing land because it is prone to water shortages
 - Water resources in Somali are preferentially set aside for pastoral use rather than agriculture

Government policy seeks to minimize the impact of drought through water and land resource management

Source: Lake Partners analysis

Case Study: Ethiopia Rural Roads

Few to no rural roads led to broad and aggressive investment in the transportation sector

- Ethiopia has been aggressive in building its road infrastructure for decades
 - Infrastructure investments prior to 2000 focused primarily on trunk routes and regional connectivity
 - Numerous and spread out villages lacked connections to main highways (e.g. "last mile" problem)
 - From 1997 to 2010 the average distance to an all-weather road has been cut in half, while the percentage of asphalt roads in good condition has increased from 17% to 70%¹.
- Universal Rural Roads Access Project (URRAP) aims to improve market access through improvement of feeder roads
 - The goal of the project is to increase road accessibility from <30% to 80% nationwide ¹, focusing on agriculturally significant areas and regions with poor market access
 - Success has been mixed as some regions slated for improvement have had difficulty finding consultants and contractors for all approved projects
 - Ethiopia's Rural Access Index Score increased from 17% to 32% from 2002 to 2004²

Critical yet uneven progress has been made in increasing rural transportation connectivity

¹Ethiopian Road Authority ²World Bank Transport Sector Board Source: Lake Partners analysis .

Case Study: Ethiopia Electrification

Investments in electrification are targeted beyond agriculture

- Ethiopia seeks to be a regional energy leader through investment in expanding its grid
 - Government goal is to become a regional exporter of power due to the country's large hydropower potential
 - However, Ethiopia currently loses 21% of power during distribution, and low power usage has hindered necessary maintenance
 - Rural population has had little access to power despite spending on hydroelectric power plants
- Agriculture will see some benefit from expansion of rural electricity
 - Ethiopia is targeting increased production potential: more efficient irrigation systems to allow for bigger farms, greater reach of extension services with multimedia, and greater mechanized farming
 - Additional benefits are closer food processing facilities (e.g., grinding mills) and refrigeration for perishable crops
 - Local studies find that rural firms in electrified villages are 40% more productive¹

Rural access to power lags behind other development indicators and requires targeted investment in extremely underserved and widely dispersed rural areas

¹ Ayele et al. 2009 Source: Lake Partners analysis

Case Study: Ghana

Case Study: Ghana Production Increases

Ghana's market-based agricultural initiatives have exacerbated economic disparities

- In 2007, Ghana launched an agriculture program to improve output
 - Promoted land expansion via credit availability
 - Added emphasis on high-value cash crops
 - Focused on large industrial farms
 - Some infrastructure improvements, but not a priority
- Output growth accelerated, but unevenly
 - Regions with higher income and larger farms (e.g. Northern, Eastern, Central) saw huge gains, almost entirely from land expansion
 - Poorer areas (e.g. Upper West, Upper East) saw little benefit as farmers didn't have collateral for credit and market access for cash crops

Ghana is a story of the rich getting richer and the poor getting poorer

 1 Upper Eastgrowth skewed by 2007 drought and subæquent recovery; for comparison 2000-06 CAGR was 8.6% while 2006-11 CAGR was (5.3%) Source: Lake Partners analysis

Case Study: Ghana Credit Programs

Poverty & land ownership customs in the far north have stifled credit programs

.

Credit programs have struggled where private land tenure is uneven

Case Study: Ghana Market Access

Access to markets is crippling for northern Ghana

Despite manageable practical & political barriers, Ghana's north suffers poverty & food insecurity

Case Study: Kenya

Source: FAOSTAT, GAEZ, Lake Partners analysis

Case Study: Kenya Agricultural Strategy

Kenyan agricultural production saw little improvement despite lofty plans for increases

- The Strategy for Revitalizing Agriculture (SRA) was adopted in 2004
- Focus was on large scale projects like irrigation dams, feeder roads, research & extension projects
- SRA relied on local implementation and private market inputs/outputs
- Poor implementation led to few improvements
 - Focus on broad goals over specific policies (e.g. "irrigation and roads" vs. water management and market access plans) prevented most investment from taking root
 - In areas where focus was targeted (e.g. extension programs), lack of qualified personnel and gross mismanagement prevented gains

Source: Kenya Nat. Bureau of Stat. 2009

By 2008, Kenya admitted failure and re-centralized the program

¹Production in Nairobi and North Eastern provinces was negligible (<003 and <001 metric tonnes respectively in 2008) Source: Lake Partners analysis

Case Study: Kenya Water Management

Despite massive investment, water policy is still lacking

Despite huge investments in water infrastructure, little of the country benefits from better irrigation...

...in large part because water policy has been grossly mismanaged

¹ http://reliefweb.int/report/kenya/irrigation-scheme-locks-horns-kenyas-pastoralists

² http://eeaseuropa.eu/delegations/kenya/documents/more_info/assessment_of_the_response_2008_en.pdf 4.6.1

³Harmonization of Decentralized Development In Kenya – KRH C& SPAN 12/2010

Source: FAO Map of irrigated areas, Afrobarometer survey 2012, Lake Partners analysis

- Ongoing maintenance costs and unpredictable water rationing make irrigation a tough sell in traditionally pastoral systems
 - "[Investments in large scale irrigation] fail to recognize the investments in developing, and then maintaining, the highly capital-intensive inputs that irrigation requires is extremely expensive, especially for food production." – International Institute for Environment and Development¹
 - "60% of water tankering was also conducted [before the crisis period of the 2008/2009 drought], which is surprising given that this might be considered more of an emergency response."²
- Water reserves are not managed sufficiently for frequent droughts
 - "According to the inventory, very few water resource assessments were carried out which suggests that adequate preparedness for drought emergency water supply may not have been appropriately undertaken"²
 - 80% of district development directors conceded that monitoring and compliance of local authorities and their projects were weak³
- Even the recent discovery of a vast aquifer in Northwest Kenya is met with realism and skepticism
 - "Abou Amani, Unesco's Africa hydrologist, urged caution and said it was important not to 'overexploit' the aquifers. 'We need to put in place a sound management system,' he said." ⁴
 - The head of the NGO Friends of Lake Turkana...said...'It is critical for governments to realise they don't... come up with programmes without community ownership... and linking it to economic development'"⁴

⁴BBC - http://www.bbcco.uk/news/science-environment-24049800
Case Study: Kenya Infrastructure Investment

Kenya's focus on new feeder roads over road maintenance produced mixed results

de la

Kenya spent 8% of its national budget (\$120B¹) on road construction from 2004-2010...with little benefit to agriculture

Source: Sheahan et al. 2013 Agricultural & Applied Economics Association Presentation; Kenya Nat. Bureau of Statistics

¹60B KSh adjusted for 2008 PPP; Kenya Nat. Bureau of Statistics Source: Lake Partners analysis

Case Study: DRC

Government dysfunction and lawlessness hamper progress

Potential Production Increase — INSUFFICIENT REGIONAL DATA AVAILABLE—

Source: BTI Report 2012, IMF Poverty Reduction Progress Report 2010, IFPRI Discussion Paper #01066 2011, Lake Partners analysis

Case Study: DRC Outreach

DRC's agricultural efforts are in the broader context of local stability

- There are claims that the government of the DRC is spending money on agricultural outreach, but little is verifiable
 - Focus on rural councils for stability and extension services for agriculture
- History of privatization with mineral companies does not appear to be a sustainable model for agriculture
 - 50% of infrastructure is in need of rehabilitation, with no indication that agriculture is a priority
 - The resulting limited market access has led to highly segmented, opaque agriculture markets "...Farmers have great difficulty in selling any surplus, while food prices in urban centers are high. Interregional connections are often limited to minimal air transport; as a result the country has essentially broken down into a set of economic enclaves"¹
- It appears that the primary traction is from NGOs
 - E.g., improved seed programs for orphan crops
 - E.g., mediation of local and farmland disputes

¹World Bank 2010, DiagnosticTrade Integration Study, Kinshasa: DemocraticRepublicof Congo, Ministry of Trade, Small and Medium-sized Enterprisesp94 Source: AICD DRC Infrastructure Report 2010, IFPRI Discussion Paper #01066 2011, Lake Partners analysis

ECONOMICS OF SELECT INTERVENTIONS

Cost of Self-Sufficiency

For most countries, reaching self-sufficiency in 2043 requires billions of dollars in investment

Impact on self-sufficiency

Estimated Program costs

Production increases from land & yield interventions have a huge impact, but reducing practical & political barriers is critical for self-sufficiency

¹Ex dudes bringing additional farmland online due to very high costs

²Indudes bringing additional farmland online, optimal grop choice, improved farming (with conservation ag) and improved grain storage Source: FAOSTAT, Lake Partners analysis

-

Impact on Production

The multiplicative effect of combined interventions is large

Botswana	Production	Burundi	Production	Ghana	Production	Malawi	Production
	(maize-equivalent tonnes)	<u>(m</u>	aize-equivalent tonnes)	<u> </u>	maize-equivalent tonnes)	<u>(r</u>	naize-equivalent tonnes)
Current Production:	92K	Current Production:	1,696K	Current Production:	13,036K	Current Production:	6,875K
 Additional land 	147К	 Additional land 	227K	 Adalitional land 	7,449K	 Additional land 	1,646K
 Optimal grap choice 	275К	Optimal grop choice	159K	 Optimal grop choice 	2,267K	 Optimal grop choice 	987К
Improved farming	920K	 Improved forming 	584K	 Improved farming 	9.049K	 Improved farming 	3,730K
 Grainstorage 	16K	 Grainstorage 	323K	 Grain storage 	2,433K	 Grainstorage 	1,157K
 Trade barriers 	1K	 Market access 	88K	 Market access 	37К	SoilErosion	25K
 Water management 	1К	Trade barriers	21K	 Multiplicative effect 	38,584K	 Resilience to drought 	60K
 Time to start a business 	0.1K	 Multiplicative effect 	2,642K			• Womenfarmers	42K
 Multiplicative effect 	6,223K					 Multiplicative effect 	4,420K
Potential Production	7,584K	Potential Production	5,739K	Potential Production	63,815K	Potential Production	18,942K
Self-Sufficiency (Current Lev	vels) 805K	Self-Sufficiency (Current Levels	9,670K	Self-Sufficiency (Current Leve	els) 42,398K	Self-Sufficiency (Current Leve	s) 16,345K
Self-Sufficiency (OECD levels)	1,045K	Self-Sufficiency (OECD levels)	15.051K	Self-Sufficiency (OECD levels)	42,398K	Self-Sufficiency (OECD levels)	17,716K
Rwanda		South Africa		Tanzania —		Uaanda	
1100011000	Production	Journagheu	Production	I WITE WITT	Production	guildu	Production

	Production (maize-equivalent tonnes)
Current Production:	2,898K
 Additional land 	602K
 Optimal grop choice 	437K
 Improved farming 	829K
Grainstorage	596K
Commodity reserves	ЗК
 Water management 	39K
 Multiplicative effect 	893K
Potential Production	6,297K
Self-Sufficiency (Current Le	evels) 14.047K
Self-Sufficiency (OECD levels)	16.061K

South Africa	Production e-equivalent tonnes)
Current Production:	14,132K
 Additional land 	60,364K
 Optimal grap choice 	18,653K
Improved farming	17,436K
 Grainstorage 	2,280K
Road condition	329K
Cultural heterogeneity	80K
 Water resources 	77K
 Multiplicative effect 	72,308K
Potential Production	185,659K
Self-Sufficiency (Current Levels)	47,287K
Self-Sufficiency (OECD levels)	47,287K

Tanzania	Production (maize-equivalent tonnes)
Current Production:	14,985K
 Additional land 	8,887K
 Optimal grap choice 	4,322K
 Improved farming 	14,704K
 Grainstorage 	2,781K
 Access to capital 	88K
 Rural electrification 	182K
Research & education	258K
 Multiplicative effect 	36,186K
Potential Production	82,393K
Self-Sufficiency (Current Leve	els) 36.805K
Self-Sufficiency (OECD levels)	44,593K

Uganda	Production aize-equivalent tonnes)
Current Production:	8,331K
 Additional land 	3,371K
Optimal grap choice	1,843K
Improved forming	5,477K
 Grainstorage 	1,920K
 Market access 	45K
Farmers co-aps	45K
Cellphones	16K
 Multiplicative effect 	14,982K
Potential Production	36,030K
Self-Sufficiency (Current Levels) 56,133K
Self-Sufficiency (OECD levels)	65,013K

Impact on Headwinds

Interventions that effectively improve production also have the greatest impact on reducing headwinds

— Botswana —	
Current Headwind:	75%
Additionalland	(0.6%)
 Optimal grap storage 	(0.3%)
Improved farming	(3.3%)
 Grain storage 	(3.1%)
Trade barriers	(1.4%)
Resilience to drought	(1.1%)
 Time to start a business 	(0.2%)
Potential Headwind	65%
Add'l Production from 1% Improvement ¹	1K

87%
(0.3%)
(0.0%)
(3.1%)
(4.1%)
(0.1%)
(1.5%)
78%
25K

— Burundi ———	
Current Headwind:	96%
 Additional land 	(0.4%)
 Optimal grop storage 	(0.2%)
 Improved farming 	(3.5%)
 Grain storage 	(3.7%)
 Market access 	(4.6%)
Trade barriers	(1.7%)
Potential Headwind	82%
Add'l Production from 1% Improvement ¹	17K

— South Africa —	
Current Headwind:	72%
 Additional land 	(0.5%)
 Optimal crop storage 	(0.5%)
 Improved farming 	(3.5%)
 Grain storage 	(1.2%)
 Road condition 	(2.6%)
 Cultural heterogeneity 	(0.7%)
 Water resources 	(0.7%)
Potential Headwind	63%
Add'l Production from 1% Improvement ¹	119K

— Ghana ———		
Current Headwind:	79%	
 Additional land 	(0.3%)	
 Optimal grop storage 	(0.0%)	
 Improved farming 	(2.7%)	
 Grain storage 	(4.3%)	
 Market access 	(0.3%)	
Potential Headwind	72%	
Add'l Production from 111K 1% Improvement ¹		

Potential Headwind	76%
 Womenfarmers 	(0.7%)
 Resilience to drought 	(1.0%)
 Sallerasion 	(0.4%)
 Grain storage 	(1.5%)
 Improved farming 	(3.1%)
 Optimal crop storage 	(0.1%)
 Additional land 	(0.3%)
Current Headwind:	83%

— Tanzania ———	
Current Headwind:	87%
 Additional land 	(0.2%)
 Optimal crop storage 	(0.0%)
 Improved farming 	(3.9%)
 Grain storage 	(2.5%)
Access to arealit	(0.7%)
 Rural electricity 	(1.4%)
 Research & education 	(1.9%)
Potential Headwind	77%
Add'l Production from 1% Improvement ¹	131K

— Uganda ———	
Current Headwind:	92%
 Adalitional land 	(0.2%)
 Optimal crop storage 	(0.0%)
 Improved farming 	(2.4%)
 Grain storage 	(4.0%)
 Market access 	(0.6%)
Farmers co-ops	(0.6%)
 Cellphones 	(0.2%)
Potential Headwind	84%
Add'l Production from 1% Improvement ¹	76K

¹Maize equivalent tonnes based on today's yields Source: Lake Partners analysis

Highest Impact, Highest Return Interventions

- In general, the highest-production and highest-ROI interventions are bringing unfarmed land into production, optimal crop choice and grain storage, while improved farming takes longer to pay back
 - An exception is Botswana where moving to improved farming techniques pays off more quickly due to less available farmland
 - Bringing additional land into production breaks even in five years or less except in Botswana, where lucrative cattle ranching
 makes farming a tougher sell
 - Optimal crop choice has low-medium confidence because it is based on 10,000 Ha GIS mapping, not on-the-ground experience

If it's important to demonstrate the power of reducing country-specific headwinds, then there are several high priority candidates

- Increasing the effectiveness of women farmers in Malawi (\$8M) has a high ROI at low cost
- Water resource management improvements in Rwanda (\$28M) are much needed to protect future resources
- Market access improvement in Ghana (\$56M) builds facilities for selling/processing, trains local officials and builds feeder roads
- Addressing South African cultural heterogeneity by increasing farmer group participation (\$60M) improves access to services for underserved minority groups

■ Having developed and well-funded government plans brings other programs to the top

- Malawi is dedicated to improving its soil health by reducing degradation and nutrient runoff (\$114M)
- Botswana has a well-formed plan to reduce trade barriers by training officials and making policy improvements (\$14M)
- Rwanda has prioritized improving its commodity reserve program by beginning the installation of several strategic grain silos (\$39M)

While the cost for most programs is in the billions, nearly all are scalable to the district (or equivalent) level

Return on Investment

The vast majority of interventions pay back within 10 years

¹Assuming an average maize price of \$506 per tonne

² Interventions also do not break even within 5 years due to low commodity prices in S. Africa (\$212/maize-equivalent tonne) Source: Lake Partners analysis

major aid organizations

Intervention Key

Cost of Increased Production

There are few inexpensive interventions that meaningfully move the needle on production potential

Annual Production Benefit (maize-equivalent tonnes)

Bringing Unfarmed Land into Production

All countries have substantial unfarmed communal or underused private land

Most land remains unfarmed because of three main barriers¹⁻³:

Most countries could see a 150-300% expansion of farmland by bringing unfarmed arable land into production

¹Momagn: http://www.momagni.org/UK/fous-on-isues/Unfarmed-arable-land-Enough-is-available--to-adhieve-long-lasting-food-seturity-for-mankind-__710.html

- ²IRIN/UN Office for the Coordination of Humanitarian Affairs http://www.rinnews.org/report/74399/sierra-leone-why-don-t-people-farm-the-land
- ³World Bank: Malawi Community-Based Rural Land Development Project: http://www.worldbank.org/projects/P075247/community-based-rural-land-development-project ?lang=en Source: Lake Partners analysis

Theoretically Optimal Crops

Source: World Bank, FAOSTAT, Lake Partners analysis

Improved Farming: Fertilizer, Pesticides, Extension & Soil Testing

		Botswana	Burundi	Ghana	Malawi	Rwanda	S. Africa	Tanzania	Uganda
Fertilizer (\$/Ha)	Conservation Ag	\$163	\$98	\$112	\$265	\$172	\$115	\$247	\$156
	Traditional Ag	\$254	\$212	\$137	\$283	\$230	\$208	\$251	\$210
Pesticides (\$/Ha)	Conservation Ag	\$54	\$63	\$51	\$95	\$56	\$15	\$52	\$62
	Traditional ag	\$83	\$97	\$82	\$146	\$87	\$24	\$80	\$95
Extension 8	Conservation Ag	\$3M	\$302M	\$130M	\$199M	\$179M	\$476M	\$164M	\$238M
soil testing	Traditional ag	\$3M	\$291M	\$122M	\$189M	\$174M	\$472M	\$155M	\$227M
- Total 5-year Cost	Conservation Ag	\$199M	\$1,221M	\$4,547M	\$5,263M	\$1,475M	\$2,638M	\$14,697M	\$5,506M
	Traditional ag	\$307M	\$2,052M	\$6,058M	\$6,217M	\$1,968M	\$4,304M	\$16,231M	\$7,597M

Conservation vs. Traditional Ag

Fertilizer reductions of 40 – 70%

- Cover crops can replace 30 75% of the nutrients provided by fertilizers^{1,2}
- Conservation ag (e.g. low-tillage) can reduce runoff leading to 5-7% reduction in fertilizer use³

Pesticide savings of >30%

 Cover crops and residues inhibit weed growth resulting in a 65% reduction in herbicide use⁴

Costlier training and support

- Complicated conservation ag methods require more training for extension officers
- Farmers require more support to utilize these methods in the iterative manner necessary for long-term soil improvements

Because of the lower costs and comparable yields of conservation ag, we use it as our base case for improved farming techniques

¹Averageof Nitrogen Ni Phosphate P) and Potassium K) needs aretaken fromglobal usaged a collect ed by the International Fatilizer Industry Assoc. – See World Fatilizer Use Manual (2014) Int. Fatilizer Industry Assoc. Accessed Jan 2014:

3:0% of nutrients left as or op residue areasumed to be available to the following plant ed or op Sustainable Agriculture Network (2000) Managing Cover Crops Profit ably 2rd Edition: http://www.sneorg/termine/Center/Books/Managing/Cover Crops Profit ably 2rd 2rd

http://www.clemson.edu/sustainableag/IP024_covercrop.pd

³An estimated 17% of Nand 19% of Pappled as fetilizer areloss to runoff (JSDA- CEAP Cropland modeling team (2010) Assessment of the Effects of Conservation Practices on Cultivated Practices on Cultivated Cropland in the Upper Mississippi River Basin), which maybe reduced 70% by cover crops (Tonitto et al. (2006) Replacing bare failows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics, Agriculture Ecosystems & Environment, 112:58-72) and an additional 53% by buffer strips (Fawecett & Smith) A review of BMPs for managing crop nutrients and conservation tillage to improve water quality, CTIC: www.conservationinformation.org); P loss to runoff may be reduced 74% by cover crops 63% by buffer strips and 86% due to reduced tillage (Fawecett & Smith) Redative to themanufacture recommended usgeoffungicide, Bracticides 27 kg/Haoffungicide, hebicide& in settidee/sin settidee/sin settide/9:24 kg/Ha/ Lidoman et al. (2008) Agronomic and Economic PerformanceofCharacteristics of Conventional and Low-External-Input Cropping systems in the Central Corn Belt, Agron, 1100: 600-610: http://www.wallacechair.lastate.edu/PDF/MarsdenFarm.Aeron L. 2008.ndf

An average of 75 kg/Ha of Nitrogen and 10 kg/Ha Phosphate is provided by cover crops: (a) Mississippi soybean promotion board (2013) Cover Crops: www.MSSOY.org; (b) Florentin et al. (2011) ICM – Green manure/cover crops & crop rotation in Conservation Agriculture on small farms FAO: http://www.fao.org/fileadmin/user_unload/agp/icm12.pdf. An average of 75 kg/Ha of Potassium is provided by cover crops: Sullivan (2003) Overview of Cover Crops and Green Manures, ATTRA Pub:

Improved Farming: Mechanization

Farm Machinery Packages

-- Retail price² & description --

	Conservation ag (base case)	Traditional ag
Tractor	\$ 21,939 (55 hp, 4WD)	\$ 21,939 (55 hp, 4WD)
Plow /roller- crimper	\$2,400 (roller/crimper)	\$2,332 (3-furrow disc plow)
Combine harvester	\$226,303 (9.1 m, self-propelled)	\$226,303 (9.1 m, self-propelled)
Planter	\$15,455 (4-row, 900 mm depth, mounted)	\$12,157 (4-row, 900 mm depth, mounted)
Fertilizer spreader	\$37,142 (4,000 l)	\$37,142 (4,000 l)
Boom sprayer	\$3,851 (12 m)	\$3,851 (12 m)
Total package cost	\$307,090	\$303,724

While mechanization doesn't meaningfully impact yields, it is critical for scale

¹Machine density indudes both tractors& combines (FAOSTAT: http://faostat.fao.org/) ²South African Guide to Machinery Costs http://www.daff.cov.za/doc/statsinfo/Guidemach1213.pdf

Improved Farming: Improved Seeds

	Current African	1 st -world seed	Average	1 st -world	% of cronland planted	5-year cost to	achieve 100%
	(50 lb bag)	(50 lb bag)	(Bags/Ha) ^{1,2}	per Ha	with improved seed (all crops) ¹⁵	"Improved" Seed	1 st World Seed ^{t6}
Maize	\$65 – \$185 Varies by country	\$445 (DKC 62-80 BR + "Refuge-	0.6	\$286	S. Africa	\$1.2B	\$2.4B
		ii rai uag i j			Botswana	\$0.1B	\$0.2B
Wheat	\$20 (Rwandan avg ⁵)	\$25 (Syngenta Southwind®)	4.9	\$123	Malawi	\$0.2B	\$0.7B
Sorghum	\$22 (Ugandan avg?)	\$126 (Pannar 8816 ⁹)	0.2	\$31	Ghana	\$1.0B	\$2.6B
Groundnuts	\$57 (Serenut 4 [Pearl Seeds] ⁹)	\$69 (Serenut + CruiserMaxx seedtreatment) ¹⁰	6.9	\$480	Uganda	\$0.9B	\$1.3B
				40.0011	Tanzania	\$2.1D	22.2P
Cassava	Program to propagat	te stem cuttings on locally a	ccessible plots ¹¹	\$9-2611	Rwanda	\$0.6B	\$1.2B
Beans	\$50 (Kholoplethe – SUG-131 ¹²)	\$252 (Syngenta Carson ¹³)	3.7	\$932	Burundi	\$0.4B	\$0.9B
Cowpeas	\$38 (Ghanajan avg⁵)	\$69 (AA TF Bt cow pea ¹⁴)	0.9	\$63	0% 20% 40% 60% 80	%	

¹Maize/Sorghum& Beens (Michigan StateUn Nersity Revised extension bulletin E2017: http://field.coo.msu.edu/us/backs/documents/E2107.odl): Wheat (UC Davis Small grain production manual: http://anraat.alogu.cdavis.edu/pdf/8208.pdf)

2 Groundnuts (Lhix. of GA 2013 Penut production guide http://www.cas.uevelu./commodities/fieldcrops/penuts/doa.ments/2013UGAPenut ProductionGuideod); Cowpea (ITA – Farmer's guide to Cowpea production in W. Africa:

http://www.icrisat.org/tropicallegumesll/pdfs/Cowpea.pdf)

3\$120 and \$65 aretheprices of a50lb bag of Pioneer hybrid in S. Africa and Malawi respectively. Pricevary depending on the maturity of the improved seed market (Pioneer, 2014)

4SA Grain: http://www.senwes.co.zaffiles/main_articles/2011/10/7/miele_mosanto.jpgEst. pricefrom best axilableseed to an improved variety with better refuger equirements based on a 15% price change from Monsanto VTB (\$295/unit) to \$mart\$tax.com (\$340/unit)

⁵Pricedate from AGRA: <u>http://www.agra.org/</u>

⁶ReisigSeeds, LLC, Russel KS Price quote (Feb 2013)

⁷AMITSA: <u>http://anit.saorg/Homeaspx</u>

⁸SA Grain: http://www.senwes.co.za/files/main_articles/2011/10/7/sorghum_pannar.jpg

⁰IFDC: api.ning.com/files/.../genderstudy_gulu_hub_report_march2011.do¢

19 Serenut (Growing Georgia: http://growingeorgia.com/news/2011/10/georgia.com/news/2012/three-considerations-and-word-aution/): Cruiser Max(Pioneer Field Facts:

http://www.chappelseds.ca/Information%20for%20website/Sovbean%20Agronomw/Sovbean%20tech%20shet/Reld_Facts_Sovbean_Sed_Trimt_Pop

11Catholic Relief Services Great Lakes Cassavaln triative (cost vary by country) http://www.crsprogramoudity.org/storage/pubs/agenv/did-final-eport.pdf6

12CIAT http://community.eldis.org/59ee3fb9/Common%20been%20varieties.pdf

13 Johnnie's Select ed Seeds: http://www.johnnyseeds.com/o-6952-car.son.asox

¹⁴Bsed on a current priceof \$0.76/lb_{UC Davis Agriculture and Natural Resources Publication 8030: http://ancat.dog.ucd.akis.edu/pdf/8030.pdf}) with a pricein or ease to account for the utilization of Bt technology See AATF, "MarucaResistant Cowpage project Progress Report"

2011: http://www.astfsfrica.org/userfiles/cowpess2011.progress-report.pdf) based on the price change from Monsanto's RR1-Brazil \$0.75/unit) to their RR2-Intactavariety \$1.36/unit)

15CGIAR-DIIVA Project: http://www.asticeiar.org/diva

¹⁶Assumes new seeds are required every year. Assumes both improved and non-improved seed is upgraded to 1# world

Small Scale Grain Storage Needs: PICS Bags Case Study

Post-harvest loss of maize range from 14% to 30% in Sub-Saharan Africa

Purdue PICS Post-Harvest Loss Program (2007-2012)

- Purdue Bags are 3-layer plastic bags capable of hermetic storage and can last for 3 years¹
- Current distribution to 28,000 villages²
- Require little training or upkeep and no silos¹
- Annual incomes for 1.6 million farmers increased an average of \$32 using "Purdue Bag" storage for their cowpea harvest³

Intervention Idea to Improve Grain Storage

- Build two regional suppliers by partnering with large plastics manufacturers in Tanzania and South Africa to set-up bag fabrication equipment (\$1.2M - 2.4M per factory⁴)
- Distribute bags through regional supply chains and local input dealers
- Provide bag vouchers to farmers for \$3/bag (\$30 per tonne)⁵

¹Baributsa, D and others (2013), Purdue Improved Cowpea Storage (PICS) Technology, Purdue Extension: http://extension.entm.purdue.edu/publications/E-262.pdf

²Project Overview, Purdue Improves Storage (PICS) Project, Purdue University: https://ag.purdue.edu/ipia/pics/Pages/ProjectOverview.aspx

³Impad update, Purdue Improved Cowpea Storage (PICS) projed, Purdue University: https://ag.purdue.edu/ipia/pics/Style% 20Ubrary/new_pics/PICS/impad.html

⁴Baæd on equipment needs for aurrent yields– See Data book for æstsbreak-down

⁵Jones, Mand others (2011) Profitability of HemeticPurdue Improved Crop Storage (PICS) Bags for African Common Bean Producers http://ageconæard-umn.edu/bitstream/117708/2/11-6.pdf

⁶African Post-harvest LossInformation System (APHUS): <u>http://www.aphis.net/</u>

Large Scale Grain Storage Needs: On Farm & Commercial Silos

Silos are needed to scale production

1st world large scale storage is a combination of on farm and commercial...

...but these are only viable if road infrastructure exists

¹Baæd on current US storage conditions-USDA Grain Stocksreports (1991-2010): http://usda.mannib.comeil.edu/MannUsda/homenage.do ²FAOSTAT: http://i.act.at.fao.org/

Market Access

Rural infrastructure initiatives in Burundi, Ghana & Uganda remove market barriers with high ROI

For each market:

- Link goods to market by investing in basic rural infrastructure (~93% of cost)
 - Construct or repair rural markets in underserved communities:
 - Rehabilitate ~70 km of all-weather gravel roads per market, reducing access time for ~170 families per km¹
- Improve value chain through agro-processing^{2,3} (~2%)
 - Provide agro-processing machinery (avg. 1-2) per market (e.g. warehouse, slaughterhouse, cassava processing plant)
- Train local officials to insure proper maintenance & operations^{3,4} (~5%)
 - Instruct local officials in road maintenance, market processes
 - Fund annual infrastructure rehabilitation projects (e.g. village trail restoration, market cleaning, etc.)

.

Total Costs						
	Burundi	Ghana	Uganda			
5-year cost per market	\$1.1M	\$90K	\$400K			
# of markets	300	611	927			
Tot. 5-year cost	\$318M	\$56M	\$378M			
Additional 5-year production (maize eq. tonnes)	438K	183K	226K			

Farmers impacted by similar programs have seen incomes rise 116%³

¹Ugandan Bureau of Statisticshttp://www.ubosorg/

²AFDB's Ugandan CAAIP Program: http://www.afdb.org/fileadmin/uploads/afdb/Documents/Project-and-Operations/UG-2008-077-EN-ADF-BD-WP-UGANDA-CAIP-II:DF

³World Bank's Ghanaian Milage Infrastructure Project (VP): http://www-wdsworldbank.org/external/default/WDSContentServer/WDSP/B/2005/02/18/000012009_20050218132224/Rendered/PDF/31016.pdf

⁴Burundi Agro-Pastoral Productivity & MarketsDevelopment, Project Appraisal, April 2010: http://documentsworldbank.org/curated/en/2010/04/12085777/burundi-agro-pastoral-productivity-markets-development-project Source: IFAD, World Bank, Ghana CAADP Budget, AFDB, Lake Partners analysis

Major Infrastructure

Road paving (SAF) and traditional rural electrification projects (TZA) are costly and have low direct ROI

Road Paving

— South Africa —

- Only 17.3% of South Africa's major roads are paved¹, and 50% of all gravel roads are in poor or very poor condition²
 - Unpaved roads are concentrated in ag-heavy southeastern provinces²
 - In 1999, the backlog in necessary road funding was \$10.6B²
- Increasing from 17.3% paved to 32.6% (Botswana-level) requires \$4.8B over five years in construction & maintenance costs
 - Average road paving costs of \$150K/km make new paving projects very costly

km of roads to pave	28,277
Cost per km	\$149,226
Annual cost of maintenance per km	\$4,251
Total 5-year cost	\$4.8B
Cost per maize-eq. tonne	\$4,220
Years to break even (\$212 maize) ⁶	Never

Rural Electrification

— Tanzania —

- Tanzania's rural electrification rate (2-4%^{3,4}) is among the lowest in Africa
 - Tanzania's grid has expanded slowly due to financial and technical constraints
- Reaching 75% electrification would be on par with most southeast Asian and central American countries
 - Even for the simplest province of Singida, this program would cost \$926M

Target electrification %	75%
Power plants required ⁵	29
Transmission systems required ⁵	43
Total 5-year cost	\$40.9B
Cost per maize-eq. tonne	\$40,918
Years to break even (\$414 maize) ⁶	545

Major infrastructure projects are useful, but require a very long-term ROI view

¹International Road Federation: http://data.worldbank.org/indicator/IS.ROD.PAVE.ZS

²Development Bank of South Africa: http://www.dbsa.org/Researdv/Documents/DBSA% 20State% 20of% 20SAs% 20Economi& 20Infrastructure% 20Report% 202012.pdf

³International Electricity Agency: http://www.worldenergyoutlook.org/resources/energydevelopment/accestoelectricity/

⁵Tanzania Electrification Master Plan: http://www.mem.go.tz/Portals/0/EasyDNNNewsDocuments/1059/0062_10072013-Power_System_Master_Plan_2012.pdf

⁶Based on current cost of one tonne of maize in specified country – FAOSTAT

⁴Tanzania's Rural Energy Agency: http://www.esmap.org/stes/esmap.org/files/4b%20TANZANIA_Innovation%20in%20Delivery%20of%20Services.pdf

Water & Soil Management

While expensive, some programs can pay back in the mid- to long-term

	Program Elements			Program Focus				
	Intervention	Typical 5-year cost per district	Malawi	Botswana	S. Africa	Rwanda		
	Water conservation & drought monitoring ¹	\$112K – \$720K	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	Soil moisture management ¹	\$0.9M - \$11.3M			\bigcirc	\bigcirc		
Watar	Local government water management training ¹	\$0.4M - \$0.7M	\bigcirc	\bigcirc	\bigcirc			
Management	Rain-water harvesting ²	\$0.4 - \$14.8M	\bigcirc	\bigcirc				
Wanagement	Drylands planting techniques (e.g. no till farming) ^{1,2}	\$0.9M - \$13.2M				\bigcirc		
	Drought crop management ¹	\$0.9M - \$11.3M			\bigcirc	\bigcirc		
	Conservation agriculture training	\$1.5M		\bigcirc	\bigcirc	\bigcirc		
Soil Conservation ³	Sustainable land management practices	\$66K	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	Increase land under agroforestry	\$2.5M		\bigcirc	\bigcirc	\bigcirc		
Integrated	Regionally focused IWRM practices ⁴	\$3.0M	\bigcirc	\bigcirc	\bigcirc			
Water Resource	Promote water efficiency and fair resourc allocation ⁴	e \$1.2M	\bigcirc	\bigcirc	\bigcirc			
(IWRM)	Capacity building in water resource fields	\$4 \$1.1M	\bigcirc	\bigcirc	\bigcirc			
Symb	ool Key	Country cost (5-year)	\$347M	\$30M	\$258M	\$25M		
\bigcirc		Headwind impact	1.4%	1.1%	0.7%	1.5%		
Intervention M not present Pro	inor Major gram Program	Increased production (maize-eq. tonnes)	87,400	875	77,100	39,305		
Com	ponent Component	Years to payback	8	88	16	1.5		

¹South Eastern Dry Areas Project Report, Republic of Zimbabwe/IFAD, Sep. 1995: http://operations/fad.org/web/ifad/operations/country/project_tags/zimbabwe/435/project_overview

²South African Water Resource Commission: http://www.wr.corg.za/Knowledge%20Hub%20Documents/Research%20Reports/1176-1-03.pdf

³Malawi Agria.ltural Sector Wide Approady, Republicof Malawi, September 2011: http://www.moafsmw.org/ocear/docs/Key% 20Documents/ASWAP% 20Revized% 2023Sept2011.pdf

⁴Water Resources Management sub-sector Strategic Plan (2011-2015), Ministry of Natural Resources, Dec 2011: <u>http://manw</u>

Source: World Bank, Malawi CAADP Budget, Botswana National Agricultural Plan, South African Water Resource Commission, Lake Partners analysis

Extension, Outreach & Education

		<u>5-year Cost</u> (\$M)	<u>Benefit</u> (Maize eq. tonnes)
Tanzania	 Target undergraduate & advanced degree agricultural education improvements^{1,2} Fund 8,000+ university scholarships Endow ~30 professorships/staff 	\$123	257,500
S. Africa	 Help cultural divisions by forming co-ops³ Create 68,000+ minority cooperative marketing groups Provide annual training, capacity building and ongoing extension services 	\$60	80,300
Malawi	 Improve women farmers' welfare programs⁴ Combine direct production support, extension services and gender awareness campaigns Improve number of local female leaders by forming women farmers' groups 	\$8	41,800
Uganda	 Boost farmer productivity through outreach & extension³ Create 360K co-ops Provide 5.3M cell phones with plans for market, weather & crop disease information 	\$1,170 \$351	45,000 16,100

Extension, outreach & education interventions rank among top initiatives for ROI and net production increase

1Based on programs by African Center of Excellence (ACE): http://www.worldbank.org/projects/P126974/strengthening-tertiary-education-africa-through-africa-centers-excellence?lang=en

²Based on the Innovative Agricultural Research Initiative (iAGRI):https://docsgoogle.com/file/d/0B0xzyGXEhwS2bW9JRVhkQkNzTDg/edit

³Based on the World Bank's Ugandan National Agricultural Advisory Program (NAADS): http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/B/2010/08/11/000333038_20100811014210/Rendered/PDF/ ICR14210P044691IC0disclosed08191101.pdf

⁴Based on the Malawian Ministry of Agriculture's Gender, HIV& AIDS Strategy from the Malawi CAADP: http://www.caadp.net/pdf/Investment%20plan%20-%20Malawi.pdf Source: Lake Partners analysis

Commerce & Trade

i.

Improvements to commerce and trade are costly over the short term and should be considered late-stage interventions

High transport costs and weak value chains necessitate trade improvements in Botswana¹ and Burundi²

- Focus on improving trade laws and opening new markets to create demand
- Train producers and co-operatives to create and utilize value chains
- Reduce travel and border crossing times via infrastructure improvements (Burundi) and ITC solutions (Botswana & Burundi)
- A similar program in Mozambique resulted in farm gate sales increasing from \$6.1M in 2010 to \$41M in 2012 due to higher prices and better market access³
- Total 5-year costs: \$13.6M (BOT) & \$460.8M (BUR)
- Botswana should target its lengthy time to start a business to improve rural commerce
 - Streamline and computerize business registration procedures
 - Decentralize process through online and district level registration centers
 - Program based on a Guyana USAID project that reduced business permitting from 64 days to 12 days for electronic/online registration⁴
 - Total 5-year costs: \$3.9M
- A distributed commodity reserve program in Rwanda should stabilize prices, increase food security and combat post-harvest losses
 - Construct, staff and manage three major grain warehouses
 - Purchase maize and beans to feed the food insecure (29% of pop.) for three months
 - Create a cash reserve capable of funding a month of crop purchases for the food insecure
 - Total 5-year costs: \$38.8M

¹Interventions based on the Botswana National Export Strategy, 2010; URL: http://www.mtigov.bw/webfm_send/178

²Interventions based on the Plan National D'Investissement agricole (PNA) 2012-17, Ministrere De L'agriculture et de l'elevage, Republique du Burundi; URL:http://www.gafspfund.org/sites/gafspfund.org

³Performance Evaluation of the USAID/Mozambique Agriculture Portfolio, Jan. 2013; URL: http://pdf.usaidg.ov/pdf_docs/PDACU951.pdf

⁴Guyana Threshold Country Plan/Implementation Program, 2008-2010 Final Report, Feb. 2010; URL: http://pdf.usaid.gov/pdf_docs/pdace950.pdf Source: Lake Partners analysis

ANALYSIS OF SELECT CAADP PLANS

CAADP Plan Comparison

(P)					
	Current priorities	Recommended priorities	Scope of current plan	Likelihood of implementation	Gov't funding for recommended priorities
Botswana (not CAADP)	 Improved farming (input subsidies & mechanization) Optimal crops Trade barriers 	 Optimal crops Improved farming¹ Grain storage 	Targeted Focused on growing an undersized ag sector	High Strong government support	3%
Burundi	Input subsidiesRehabilitate rural roads	 Grain storage Expanding to unfarmed land Market access 	Specific, but mixed priorities Targets market access, but focuses on input subsidies for bad soil	Low Small government discretionary budget	3%
Ghana	 Rural infrastructure Value chain development Food security 	 Grain storage Expanding to unfarmed land Optimal crops 	Specific, but broader priorities Focus on food security and increased incomes	Low-Medium Too many priorities with limited funds	1%
Malawi	 Women farmers Input subsidies Water & soil management 	Women farmersGrain storageOptimal crops	Broad Ag-sector wide budget	Low-Medium High government awareness of problems, but limited funds	4%
Rwanda	 Intensification of production Promote agribusinesses Strengthen institutions in support of ag 	 Grain storage Expanding to unfarmed land Water management 	Broad, with ambitious targets Focus on ag productivity & poverty	Medium Plan is currently 40-60% funded	3%
South Africa (not CAADP)	 Promote profitable production Improve management and regulatory services Diversity in ag sector 	 Optimal crops Cultural heterogeneity Grain storage	Incremental growth Targets commercial growth and empowers disadvantaged farmers	Medium-High Advanced economy & well- developed ag sector	<1%
Tanzania	 Input subsidies Local official training Access to capital 	 Expanding to unfarmed land Grain storage Research & education 	Targeted Focus on public-private investments in ag production	Medium Dedicated to improvement, but has persistent corruption	1%
Uganda	 Agricultural research Optimal crops Expanding rural co-ops 	 Grain storage Optimal crops Expanding to unfarmed land 	Broad Targets capacity building and food security through education & improved farming techniques	Low-Medium Overly dependent on external funds	2%

¹ 1st-world farming with conservation ag Source: Lake Partners analysis

Botswana has a well-

developed plan with a

high likelihood of

successful

implementation

Country Level Plans: Botswana

The ag sector lags behind other segments of the economy and improvements are focused on reducing imports

- Botswana's Agriculture Development plan provides inputs, mechanization and crop advice to increase production of smallholders¹
 - Their plan focuses on commercial farming to replicate the success seen with livestock
 - It has replaced plans focused on dryland agriculture with general input support
 - Funded primarily by the Government of Botswana
- Because of Botswana's low yields and low absolute production, multiple interventions are needed to break even
 - Optimal crops and improved farming techniques are prerequisites for any program of interventions

Current production levels (maize-eq. tonnes): 0.1M

Self-sufficiency in 2043 (OECD consumption levels): 1.6M

				Potential Int	erventior	าร			
	Program Co	sts (\$M)	Bite-Si (5-year C	ize losts)	Gov't acting on plan?	% Funded by Nat'l Ag Plan	Cumulative add'l production (maize-eq. tonnes)	Stand alone years to break even ²	Cumulative
	One-Time	Annual	District-level (\$M)	Village-level					years to break even ²
Optimal Crop	\$9.8	\$-	\$1.1	\$10,400	\checkmark	100%	0.3M	<1	<1
Improved Farming (Conservation Ag)	\$399	\$116	\$109	\$-	~	2%	1.2M	2	1
Grain Storage	\$12.9	\$0.9	\$1.9	\$18,200		0%	1.6M	2	1
Trade Barriers	\$13.6	\$-	\$-	\$-	\checkmark	100%	1.7M	32	1
Water Resource Mgmt.	\$29.8	\$-	\$3.4	\$132,200		0%	1.7M	88	1
Additional Land	\$14,650	\$-	\$1,628	\$15,472,700		0%	7.5M	256	18
Time to start a business	\$2.9	\$0.2	\$1.4	\$-	~	8%	7.5M	Never	18

¹National Master Plan for Arable Agriculture and Dairy Development (NAMPAAD), Ministry of Agriculture, Republic of Botswana

²Rounded to the nearest year and calculated using \$387/tonne of maize

Decreasing ROI

Country Level Plans: Burundi

Burundi's poorly

prioritized plan lacks

the funding necessary

for sector-wide

agricultural

improvements

Poor connectivity, isolated farms and low capacity markets require investment to grow the ag sector

- Burundi's CAADP plans focus on increased production using costly input subsidy programs while poor market access results in food failing to make it to market regularly¹
 - Input subsidies target large populations of rural poor
 - Rehabilitate rural roads to improve market access
 - Funded by both the Government and development partners (USAID, World Bank, etc.)
- Because of Burundi's poor soil, even with all interventions it does not achieve self-sufficiency
 - Burundi's plan is wide in scope, covering our targeted interventions, but lacks funding and prioritization¹

Current production levels (maize-eq. tonnes): 1.7M

Self-sufficiency in 2043 (OECD consumption levels): 22.6M

	Potential Interventions								
	Program Costs (\$M)		Bite-Size (5-year Costs)		Gov't	% Funded	Cumulative add'l	Stand alone	Cumulative
	One-Time	Annual	District-level (\$M)	Village-level	acting on plan? Ag Pla	by Nat'l Ag Plan	t'l production (maize-eq. an tonnes)	years to break even ²	years to break even ²
Grain Storage	\$64	\$18	\$9.1	\$5,500	\checkmark	0%	0.3M	<1	<1
Optimal Crop	\$124	\$-	\$7.3	\$4,400		0%	0.4M	1	<1
Additional Land	\$431	\$-	\$25.3	\$15,200		0%	0.6M	2	1
Market Access	\$318	\$-	\$19.1	\$436,000	\checkmark	9%	1.2M	5	2
Trade Barriers	\$461	\$-	\$-	\$-		0%	1.4M	20	2
Improved Farming (Conservation Ag)	\$4,779	\$950	\$561	\$-	~	<1%	4.0M	Never	8

¹Plan National D'Investissement agricole (PNIA) 2012-17, Ministrere De L'agriculture et de l'elevage, Republique du Burundi ²Rounded to the nearest year and calculated using \$792/tonne of maize Seurose u leice Destenes a calculated

Country Level Plans: Ghana

Inspired rural infrastructure, value chain development and food security sub-programs lack funds

Ghana's ag plan has right priorities, but insufficient funding

- Ghana's CAADP plan addresses our top-three recommended interventions by targeting rural infrastructure, strategic commodities value chain development and food security (79% of budget)
 - The plan's prioritization of rural infrastructure (29%) directly complements our emphasis on increasing rural markets and reducing market access times across Ghana
 - CAADP plan significantly funds value chain development of specific national crops (13%) and food security (12%), firmly aligning with our goals of optimizing crops and improving grain storage
- Although the Ghanaian CAADP sub-programs strategically align with our key interventions, substantial additional funding is required
 - Current CAADP budget only covers 32% of our rural market access intervention
 - Ghana's national ag plan funds a mere 1.2% of optimal crops and 5.8% of grain storage interventions

Decreasing ROI

- Current production levels (maize-eq. tonnes): 13.0M
 - Self-sufficiency in 2043 (OECD consumption levels): 63.6M

	Potential Interventions									
	Program Costs (\$M)		Bite-Size (5-year Costs)		Gov't	% Funded	Cumulative add'l	Stand alone	Cumulative	
	One-Time	Annual	District-level (\$M)	Village-level	acting on plan?	by Nat'l Ag Plan	production (maize-eq. tonnes)	years to break even ¹	years to break even ¹	
Optimal Crops	\$327	\$-	\$32.7	\$11,500	\checkmark	1%	2.3M	<1	<1	
Additional Land	\$916	\$581	\$382	\$134,500		0%	9.1M	<1	<1	
Grain Storage	\$547	\$136	\$123	\$43,240	\checkmark	6%	13.0M	<1	<1	
Market Access	\$52.1	\$0.7	\$5.6	\$225,000	\checkmark	32%	13.2M	3	<1	
Improved Farming (Conservation Ag)	\$22,439	\$3,250	\$3,869	\$-	\checkmark	<1%	50.1M	15	5	

¹Rounded to the nearest year and calculated using \$523/tonne of maize

Source: World Bank, IFAD, FAO, Ghanaian CAADP budget, Lake Partners analysis

132

Country Level Plans: Malawi

Safeguarding natural resources and ensuring gender equity in ag are the keys to a sustainable food-secure future

- The Malawi agricultural sector-wide approach focuses on risk management and food security in addition to market development and sustainability¹
 - There is conflict between expensive maize yield improvements, through irrigation and increased input use, and the development of a sustainable, diversified crop sector
 - Plan prioritizes commercial agriculture focused on high value export crops
 - Supported via a combination of government and foreign aid funds
- Malawi's focus on inputs and maize irrigation is not supported by our analysis of ROI for various interventions
 - Despite strong laws to protect women in the civic sphere, relieving economic and social barriers for women farmers will boost productivity at a low cost
 - Malawi can also benefit from simple, efficient interventions, such as water and soil conservation
- Current production levels (maize-eq. tonnes): 6.9M
 - Self-sufficiency in 2043 (OECD consumption levels): 26.6M

	Potential Interventions										
	Program Costs (\$M)		Bite-Size (5-year Costs)		Gov't	% Funded by Nat'l Ag	Cumulative add'l	Stand alone	Cumulative vears to		
	One-Time	Annual	District-level (\$M)	Village-level	plan?	Plan	(maize-eq. tonnes)	break even ²	break even ²		
Women Farmers	\$7.7	\$-	\$2.1	\$-	\checkmark	100%	0.1M	<1	<1		
Optimal Crop	\$265	\$-	\$9.5	\$8,000	\checkmark	10%	1.0M	<1	<1		
Grain Storage	\$529	\$47.7	\$27.4	\$23,100	\checkmark	<1%	1.3M	1	1		
Additional Land	\$936	\$-	\$33.4	\$28,200		0%	2.7M	1	2		
Resilience to Drought	\$233	\$-	\$8.3	\$46,700	\checkmark	11%	2.8M	8	2		
Soil Erosion	\$114	\$-	\$4.1	\$-	\checkmark	100%	2.9M	9	2		
Improved Farming (Conservation Ag)	\$11,605	\$2,466	\$855	\$-	\checkmark	1%	12.0M	Never	12		

¹Malawi Agricultural Sector Wide Approach, Republicof Malawi, September 2011

²Rounded to the nearest year and calculated using \$493/tonne of maize

Source: Lake Partners analysis

.

Malawi's ag plan is overly broad and fails to prioritize the most efficient improvements

Country Level Plans: Rwanda

Poverty and food insecurity are the primary drivers of Rwandan agricultural policies

- The Rwandan agricultural sector investment plan¹ is robust and consists of nearly all of our priced interventions and more
 - The agricultural investment plan as envisioned is only 40-60% funded
 - Rwanda's agricultural plan is broader, targeting systemic poverty as well as increased production
- Due to Rwanda's poor soil, the country cannot reach self-sufficiency using all studied interventions
 - Production can be increased to 45% of self-sufficiency at current consumption levels, and 39% at OECD consumption levels
- Current production levels (maize-eq. tonnes): 2.9M
 - Self-sufficiency in 2043 (OECD consumption levels): 24.1M

	Potential Interventions									
	Program Costs (\$M)		Bite-Si (5-year C	Gov't	% Funded	Cumulative add'l	Stand alone	Cumulative		
	One-Time	Annual	District-level (\$M)	Village-level	acting on plan?	by Nat'l Ag Plan	production (maize-eq. tonnes)	years to break even ²	years to break even ²	
Optimal Crop	\$91.5	\$-	\$18.3	\$5,900	\checkmark	7%	0.4M	<1	<1	
Additional Land	\$195	\$20.9	\$60.0	\$19,200		0%	0.7M	1	1	
Grain Storage	\$256	\$29.9	\$80.1	\$25,900	\checkmark	2%	1.2M	1	1	
Water Resource Mgmt.	\$28.5	\$-	\$-	\$-	\checkmark	40%	1.3M	2	1	
Commodity Reserves	\$36.8	\$0.4	\$9.4	\$-	\checkmark	35%	1.3M	35	2	
Improved Farming (Conservation Ag)	\$4,753	\$632	\$1,583	\$-	\checkmark	1%	3.4M	Never	12	

¹Agriculture Sector Investment Plan, Ministry of Agriculture and Animal Resources, Government of Rwanda, 2009

²Rounded to the nearest year and calculated using \$470/tonne of maize

Source: Lake Partners analysis

÷.

This well-developed plan has a moderate likelihood of successful implementation due to limited resources

Country Level Plans: South Africa

A well-developed ag economy continuing broad-based ag improvements to increase exports and profits

- South Africa has a broad plan that seeks to increase agricultural profits while improving social and economic conditions for previously disadvantaged individuals¹
 - Sustainable management of natural resources is a major component of the sector wide strategy
 - An improved agricultural sector is needed to pull poor smallholders out of poverty
- Costly interventions in South Africa limit the reach of plans to improve agriculture

.

- Our interventions fit well into the South African agricultural plan
 - Despite much available land, the costs associated with bringing these areas into production is high compared to benefit (57% improvement in yields on new land vs. 175% for existing farmland)
 - Both the South African plan and ours prioritize interventions that reduce the burden caused by cultural heterogeneity

Current production levels (maize-eq. tonnes): 14.1M

Self-sufficiency in 2043 (OECD consumption levels): 70.9M

	Potential Interventions									
	Program Costs (\$M)		Bite-Size (5-year Costs)		Gov't	% Funded	Cumulative add'l	Stand alone	Cumulative vears to	
	One-Time	Annual	District-level (\$M)	Village-level	plan?	Plan	(maize-eq. tonnes)	break even ²	break even ²	
Optimal Crop	\$132	\$-	\$14.7	\$44,700		0%	18.7M	<1	<1	
Cultural Heterogeneity	\$59.7	\$-	\$6.6	\$20,200	\checkmark	26%	19.1M	4	<1	
Additional Land	\$59,459	\$-	\$6,607	\$20M		0%	76.6M	5	4	
Grain Storage	\$2,229	\$152	\$332	\$1.0M		0%	95.2M	7	4	
Improved Farming (Conservation Ag)	\$11,260	\$2,345	\$2,554	\$-	~	1%	156.5M	8	176	
Water Resources	\$258	\$-	\$29.4	\$0.9M		<1%	159.5M	16	122	
Road Condition	\$4,220	\$120	\$542	\$1.6M	\checkmark	37%	171.5M	Never	1,730	

¹StrategicPlan for the Department of Agriculture, Forestry and Fisheries 2012-17, Republic of South Africa

²Rounded to the nearest year and calculated using \$212/tonne of maize

Country Level Plans: Tanzania

With a strong and growing ag sector, only a few interventions are needed for significant improvement

- Tanzania's agricultural development plan is focused on increasing farm incomes and profitability in the agriculture sector¹
 - Corruption remains a problem in the country's expensive input subsidy programs calling for capacity building and reform at the local level
 - Improving access to capital is a long-standing goal of the Tanzanian government

Despite frequent shifts in plans and priorities, Tanzania continues to make steady improvement

.

- Our interventions are similar to those developed by the Tanzanian government but with lower prioritization of costly & poorly distributed input subsidies
 - Continuing to bring more land into production is critical for food security and production increases
 - Both plans target boosting Tanzania's lagging agricultural research and education systems by revitalizing universities

Current production levels (maize-eq. tonnes): 15.0M

Self-sufficiency in 2043 (OECD consumption levels): 66.9M

	Potential Interventions										
	Program Costs (\$M)		Bite-Size (5-year Costs)		Gov't	% Funded	Cumulative add'l production	Stand alone	Cumulative		
	One-Time	Annual	District-level (\$M)	Village-level	plan?	Ag Plan	(maize-eq. tonnes)	break even ²	break even ²		
Optimal Crop	\$447	\$-	\$17.2	\$11,800		0%	4.3M	<1	<1		
Grain Storage	\$627	\$153	\$53.4	\$36,600	~	2%	6.2M	<1	<1	_	
Additional Land	\$2,433	\$-	\$93.6	\$64,100		0%	15.5M	<1	<1	RO	
Research & Education	\$82.7	\$8.1	\$-	\$-	~	14%	17.3M	1	<1	asing	
Access to Capital	\$265	\$-	\$10.2	\$-	~	1%	18.0M	7	<1	cre	
Rural Electrification	\$40,918	\$-	\$926	\$-	~	2%	19.3M	545	6	De	
Improved Farming (Conservation Ag)	\$38,264	\$7,578	\$2,929	\$-	~	<1%	67.4M	Never	32		

¹Tanzania Agriculture and food security investment plan (TAFSOP) 2011-12 to 2020-21, Main document 18th October 2011, United Republicof Tanzania

²Rounded to the nearest year and calculated using \$414/tonne of maize

Country Level Plans: Uganda

Uganda adequately funds ag advisory services & technology development while neglecting infrastructure

- Uganda's CAADP plan prioritizes research to utilize modern farming technologies & practices, aligning with our recommendations
 - Agricultural advisory services & technology development, increased value addition, and pest & disease control account for 57% of Uganda's CAADP budget
 - Agricultural advisory services & technology development sub-programs align well with our optimal crops, cell phones and farmers' co-ops interventions
- However, the Ugandan plan underfunds infrastructure, a key sub-component of our intervention plan
 - Our market access intervention is only 16% funded by the current CAADP allocation, largely due to an insufficient national investment in rural roads
- Current production levels (maize-eq. tonnes): 8.3M
 - Self-sufficiency in 2043 (OECD consumption levels): 97.5M

	Potential Interventions									
	Program Costs (\$M)		Bite-Size (5-year Costs)		Gov't	% Eunded	Cumulative add'l	Stand alone	Cumulative	
	One-Time	Annual	District-level (\$M)	Village-level	acting on plan?	by Nat'l Ag Plan	production (maize-eq. tonnes)	years to break even ¹	years to break even ¹	
Optimal Crop	\$404	\$-	\$5.2	\$3,600	\checkmark	15%	1.8M	<1	<1	
Grain Storage	\$471	\$81	\$11.4	\$7,700	\checkmark	14%	3.3M	<1	<1	
Additional Land	\$7,684	\$-	\$99.8	\$67,900		0%	7.2M	3	2	
Market Access	\$353	\$4.9	\$4.9	\$-	~	16%	7.6M	12	2	
Farmers co-ops	\$1,170	\$-	\$15.2	\$10,000	\checkmark	10%	7.7M	35	2	
Cell Phones	\$338	\$2.6	\$4.6	\$3,100		0%	8.1M	35	2	
Improved Farming (Conservation Ag)	\$19,799	\$3,596	\$491	\$-	~	3%	27.7M	37	5	

¹Rounded to the nearest year and calculated using \$755/tonne of maize

Source: World Bank, IFPRI, AGRA, AFDB, IFAD, FAO, Ugandan CAADP budget, Lake Partners analysis

Uganda's CAADP plan emphasizes research, but neglects infrastructure

Decreasing ROI

CLOSING THOUGHTS

BY HOWARD G. BUFFETT

This report presents a large volume of information and analysis to draw some significant conclusions about Africa's real vs. theoretical potential for agriculture. Like any report of this complexity, certain wellconsidered assumptions were made. We anticipate that not everyone will agree with every assumption, or even the methodology of trying to illustrate complex dynamics in a way that is accessible. We are making available online a data book (http://www. brownrevolution.org/) of the detailed assumptions underlying this analysis, but we recognize that some people will still take issue with the fact that we did not create a 500-page narrative to accompany this work and did not enlist academics to run statistically significant models.

However, we felt it was important to do three things: 1) to produce an honest and complete effort to identify a more realistic expectation of available and appropriate agricultural production potential in Africa; 2) to produce a report that people could easily understand; and 3) to produce a report that people would actually read. The world is littered with hundreds of well-intentioned academic papers that are rarely read or understood.

We started with a relatively objective view of potential arable land using basic physical characteristics.

The headwinds we describe are by their nature more subjective. *But it is these headwinds that are responsible for the majority of hunger in Africa* so we put a stake in the ground to try to capture their effects.

It is politics, conflict, corruption and underinvestment that contribute to the challenge of feeding millions of people. This isn't just our opinion; it is shared by others, including the Food and Agriculture Organization of the United Nations in the 2014 "State of Food Insecurity in the World" and the ONE Campaign in "Trillion Dollar Scandal."

For example, conflict has a significant and devastating effect on agriculture, production potential and hunger. Africa is comprised of 54 countries, with nearly half actively experiencing armed conflict or recently emerging from armed conflict.¹ The World Bank estimates that poverty rates are 20 percentage points higher and people are twice as likely to be undernourished in countries experiencing repeated cycles of conflict. Displacement from people fleeing violence only increases the likelihood that agricultural production is interrupted and people suffer from increased food insecurity. It is critical to capture the effects of conflict and other difficult to measure factors when considering a country's potential for agriculture. One reason that it is so important that we understand Africa's real potential for agriculture – and real barriers – is so we get the solutions right. Unrealistic goals keep people hungry. They contribute to the idea that untenable solutions are solutions, when in reality they displace efforts that could be successful.

Another reason it is important to be realistic is because industrialized agriculture in the developed world cannot possibly feed a large portion of Africa. American farmers will continue to become more efficient, but it is unlikely they will significantly increase the roughly 20 percent² of agricultural commodities they currently export, mostly to other developed nations. Production and exports will increase, but it will most likely remain relative to population increases.

The majority of food globally, about 70 percent, is produced by small-scale farmers, and mostly for their own household consumption.³ These farmers have challenges and limitations in terms of adaptation of the technologies used in developed countries like the United States. The solution to world hunger will be increasing production in the local and regional areas where the consumption is needed. It will be further achieved by better regional trade (which requires stability and peace) and by bolstering local and regional markets. International exports will not feed poor hungry people in rural areas with limited infrastructures and incomes. Increasing their production will. To get this right we need solutions that fit the circumstances and to be realistic about when and where scale is possible. We do not need more blanket solutions that fit a Westernized view of industrialized agriculture or strategies designed by bureaucrats, economists and politicians.

No strategy will work if it is built on the wrong set of assumptions. Therefore, we hope this analysis adds to the debate of what is possible in Africa, and ultimately contributes to developing realistic solutions to addressing hunger by improving agricultural productivity among smallholder farmers.

 ² U.S. Census Bureau, Statistical Abstract of the United States, 2012, p.548.
 ³ Karla D. Maass Wolfenson, Food and Agriculture Organization of the United Nations, "Coping with the Food and Agriculture Challenge: Smallholders' Agenda," revised July 2013, p. 29.

^{1&}quot;Africa's Forever Wars," Jeffrey Gettleman, Foreign Policy Magazine, 22 February 2010.

All photographs by Howard G. Buffett. © Howard G. Buffett Foundation, 2015. All rights reserved.